Skip to main content
Log in

A Szemerédi–Trotter Type Theorem in \(\mathbb {R}^4\)

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that m points and n two-dimensional algebraic surfaces in \({\mathbb {R}}^4\) can have at most \(O(m^{{k}/({2k-1})}n^{({2k-2})/({2k-1})}+m+n)\) incidences, provided that the algebraic surfaces behave like pseudoflats with k degrees of freedom, and that \(m\le n^{(2k+2)/3k}\). As a special case, we obtain a Szemerédi–Trotter type theorem for 2-planes in \({\mathbb {R}}^4\), provided \(m\le n\) and the planes intersect transversely. As a further special case, we obtain a Szemerédi–Trotter type theorem for complex lines in \({\mathbb {C}}^2\) with no restrictions on m and n (this theorem was originally proved by Tóth using a different method). As a third special case, we obtain a Szemerédi–Trotter type theorem for complex unit circles in \({\mathbb {C}}^2\). We obtain our results by combining several tools, including a two-level analogue of the discrete polynomial partitioning theorem and the crossing lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Over \(\mathbb {R}\) one must be very careful with the phrase “generic,” but informally, a generic vector is any vector that does not lie in a certain bad set that has smaller dimension than the entire vector space. Often the bad set will not be defined explicitly, but will be determined from the list of properties we wish the generic vector to have. A precise definition of a generic real vector is given in Sect. 4.2.

  2. In [7, Sect. 5.4], El Kahoui actually considers a generic affine transformation rather than a generic orthogonal transformation, but the same argument applies.

  3. More precisely, for every choice of \(R_1\) and \(R_2\), there is a dense Zariski open subset of \(\mathbb {C}^4\) so that if \(v_1\) lies in this open subset then the desired property holds.

References

  1. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. Ann. Discrete Math. 12, 9–12 (1982)

    MATH  Google Scholar 

  2. Barone, S., Basu, S.: On a real analogue of Bezout inequality and the number of connected of connected components of sign conditions (2013). arXiv:1303.1577v2

  3. Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Bochnak, J., Coste, M., Roy, M.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5(1), 99–160 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edelsbrunner, H., Sharir, M.: A hyperplane incidence problem with applications to counting distances. The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 253–263. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  7. El Kahoui, M.: Topology of real algebraic space curves. J. Symb. Comput. 43(4), 235–258 (2008)

    Article  MATH  Google Scholar 

  8. Elekes, G., Tóth, C.: Incidences of not-too-degenerate hyperplanes. Computational Geometry (SCG’05), pp. 16–21. ACM, New York (2005)

    Google Scholar 

  9. Erdős, P.: Problems and Results in Combinatorial Geometry, vol. 440. Annals of the New York Academy of Sciences, New York (1985)

    Google Scholar 

  10. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  11. Guth, L., Katz, N.: On the Erdős distinct distance problem in the plane. Ann. Math. 181(1), 155–190 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harris, J.: Algebraic Geometry: A First Course. Springer, New York (1995)

    Google Scholar 

  13. Kaplan, H., Matoušek, J., Safernova, Z., Sharir, M.: Unit distances in three dimensions. Comb. Probab. Comput. 21(4), 597–610 (2012)

    Article  MATH  Google Scholar 

  14. Kővari, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    Google Scholar 

  15. Łaba, I., Solymosi, J.: Incidence theorems for pseudoflats. Discrete Comput. Geom. 37(2), 163–174 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leighton, F.: Complexity Issues in VLSI. Foundations of Computing Series. MIT Press, Cambridge, MA (1983)

    Google Scholar 

  17. Milnor, J.: Singular Points of Complex Hypersurfaces. Princeton University Press, Princeton (1969)

    Google Scholar 

  18. Mumford, D.: Algebraic Geometry I: Complex Projective Varieties. Springer, New York (1981). Corr. 2nd printing

    Book  Google Scholar 

  19. Pach, J., Sharir, M.: Repeated angles in the plane and related problems. J. Comb. Theory Ser. A 59, 12–22 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pach, J., Sharir, M.: On the number of incidences between points and curves. Comb. Probab. Comput. 7(1), 121–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Semple, J.G., Roth, L.: Introduction to Algebraic Geometry. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  22. Sharir, M., Sheffer, A., Zahl, J.: Improved bounds for incidences between points and circles. Comb. Probab. Comput. 24(3), 490–520 (2015)

    Article  MathSciNet  Google Scholar 

  23. Solymosi, J., Tao, T.: An incidence theorem in higher dimensions. Discrete Comput. Geom. 48(2), 255–280 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Solymosi, J., Tardos, G.: On the number of \(k\)-rich transformations. In: Proceedings of the 23th Annual Symposium on Computational Geometry (SoCG), pp. 227–231. ACM, New York (2007)

  25. Solymosi, J., Tóth, C.: On distinct distances in homogeneous sets in the Euclidean space. Discrete Comput. Geom. 35, 537–549 (2005)

    Article  Google Scholar 

  26. Székely, L.: Crossing numbers and hard Erdős problems in discrete geometry. Comb. Probab. Comput. 6(3), 353–358 (1997)

    Article  MATH  Google Scholar 

  27. Szemerédi, E., Trotter, W.: Extremal problems in discrete geometry. Combinatorica 3(3), 381–392 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tóth, C.: The Szemerédi-Trotter theorem in the complex plane (2003). arXiv version 1. arXiv:math/0305283v1

  29. Tóth, C.: The Szemerédi-Trotter theorem in the complex plane. Combinatorica 35(1), 95–126 (2015)

    Article  MathSciNet  Google Scholar 

  30. Zahl, J.: An improved bound on the number of point-surface incidences in three dimensions. Contrib. Discrete Math. 8(1), 100–121 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Saugata Basu, Kiran Kedlaya, Silas Richelson, Terence Tao, and Burt Totaro for helpful discussions. The author would like to especially thank the anonymous referees for their careful reading and numerous suggestions. Referee #1 in particular went above and beyond the usual refereeing process, and the author is very grateful for the time and effort he or she put in. The author was supported in part by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Zahl.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahl, J. A Szemerédi–Trotter Type Theorem in \(\mathbb {R}^4\) . Discrete Comput Geom 54, 513–572 (2015). https://doi.org/10.1007/s00454-015-9717-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9717-7

Keywords

Mathematics Subject Classification

Navigation