Skip to main content
Log in

Multiscale Projective Coordinates via Persistent Cohomology of Sparse Filtrations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We present a framework which leverages the underlying topology of a data set, in order to produce appropriate coordinate representations. In particular, we show how to construct maps to real and complex projective spaces, given appropriate persistent cohomology classes. An initial map is obtained in two steps: First, the persistent cohomology of a sparse filtration is used to compute systems of transition functions for (real and complex) line bundles over neighborhoods of the data. Next, the transition functions are used to produce explicit classifying maps for the induced bundles. A framework for dimensionality reduction in projective space (Principal Projective Components) is also developed, aimed at decreasing the target dimension of the original map. Several examples are provided as well as theorems addressing choices in the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Using a 7th nearest neighbor graph.

  2. Determined experimentally using a persistent cohomology computation.

References

  1. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (2013)

    Google Scholar 

  2. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numerica 23, 289–368 (2014)

    Article  MathSciNet  Google Scholar 

  4. Carlsson, G., Mémoli, F.: Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res. 11, 1425–1470 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Carlsson, G., Mémoli, F.: Classifying clustering schemes. Found. Comput. Math. 13(2), 221–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse filtrations (2015). arXiv:1506.03797

  7. Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. Proc. Natl. Acad. Sci. USA 110(46), 18566–18571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theorem for compact sets in Euclidean space. Discrete Comput. Geom. 41(3), 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Freedman, D.: Hardness results for homology localization. Discrete Comput. Geom. 45(3), 425–448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7(1), 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Probl. 27(12), Art. No. 124003 (2011)

  13. De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Silva, V., Skraba, P., Vejdemo-Johansson, M.: Topological analysis of recurrent systems. In: Workshop on Algebraic Topology and Machine Learning. NIPS (2012)

  15. Dey, T.K., Hirani, A.N., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis from point data. In: Proceedings of the 26th Annual Symposium on Computational Geometry (SCG’10), pp. 166–175. ACM, New York (2010)

  17. Edelsbrunner, H., Jabłoński, G., Mrozek, M.: The persistent homology of a self-map. Found. Comput. Math. 15(5), 1213–1244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN’05), p. 254–260. IEEE Press (2005)

  19. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  20. Hitchin, N.: Communications-What is... a gerbe? Notices Am. Math. Soc. 50(2), 218–219 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  22. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lim, L.H.: Hodge Laplacians on graphs (2015). arXiv:1507.05379

  25. Martin, S., Thompson, A., Coutsias, E.A., Watson, J.P.: Topology of cyclo-octane energy landscape. J. Chem. Phys. 132(23), 234115 (2010)

    Article  Google Scholar 

  26. May, J.P.: A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1999)

    MATH  Google Scholar 

  27. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies. Princeton University Press, Princeton (1974)

    Google Scholar 

  28. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence (1995)

  29. Morozov, D.: Dionysus (2012). http://mrzv.org/software/dionysus/

  30. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6435–6439. IEEE (2016)

  32. Perea, J.A., Carlsson, G.: A klein-bottle-based dictionary for texture representation. Int. J. Comput. Vis. 107(1), 75–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. 61, 197–278 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tausz, A., Carlsson, G.: Homological coordinatization (2011). arXiv:1107.0511

  37. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  38. Weinberger, S.: What is... persistent homology? Notices Am. Math. Soc. 58(1), 36–39 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Nils Baas, Ulrich Bauer, John Harer, Dmitriy Morozov and Don Sheehy for extremely helpful conversations regarding the contents of this paper. The detailed comments of the anonymous reviewers were invaluable in fixing multiple imprecisions found in the original draft; thank you for the high-quality feedback. This work was partially supported by the NSF under Grant DMS-1622301 and DARPA under Grant HR0011-16-2-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Perea.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perea, J.A. Multiscale Projective Coordinates via Persistent Cohomology of Sparse Filtrations. Discrete Comput Geom 59, 175–225 (2018). https://doi.org/10.1007/s00454-017-9927-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9927-2

Keywords

Mathematics Subject Classification

Navigation