Skip to main content

Advertisement

Log in

On the Reverse Loomis–Whitney Inequality

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The present paper deals with the problem of computing (or at least estimating) the \(\mathrm {LW}\)-number \(\lambda (n)\), i.e., the supremum of all \(\gamma \) such that for each convex body K in \({\mathbb {R}}^n\) there exists an orthonormal basis \(\{u_1,\ldots ,u_n\}\) such that

$$\begin{aligned} {\text {vol}}_n(K)^{n-1} \ge \gamma \prod _{i=1}^n {\text {vol}}_{n-1} (K|u_i^{\perp }) , \end{aligned}$$

where \(K|u_i^{\perp }\) denotes the orthogonal projection of K onto the hyperplane \(u_i^{\perp }\) perpendicular to \(u_i\). Any such inequality can be regarded as a reverse to the well-known classical Loomis–Whitney inequality. We present various results on such reverse Loomis–Whitney inequalities. In particular, we prove some structural results, give bounds on \(\lambda (n)\) and deal with the problem of actually computing the \(\mathrm {LW}\)-constant of a rational polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balister, P., Bollobás, B.: Projections, entropy and sumsets. Combinatorica 32(2), 125–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, K.: Shadows of convex bodies. Trans. Am. Math. Soc. 327(2), 891–901 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, K.: Volume ratio and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44(2), 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38(1), 91–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, J., Bez, N., Flock, T.C., Lee, S.: Stability of the Brascamp–Lieb constant and applications. arXiv:1508.07502v1 (2015) (To appear in American J. Math.)

  6. Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, J., Carbery, A., Wright, J.: A non-linear generalisation of the Loomis–Whitney inequality and applications. Math. Res. Lett. 12(4), 443–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobkov, S.G., Nazarov, F.L.: On convex bodies and log-concave probability measures with unconditional basis. In: Klartag, B., et al. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1807, pp. 53–69. Springer, Berlin (2003)

    Chapter  Google Scholar 

  9. Bollobás, B., Thomason, A.: Projections of bodies and hereditary properties of hypergraphs. Bull. Lond. Math. Soc. 27(5), 417–424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brannen, N.S.: Volumes of projection bodies. Mathematika 43(2), 255–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalizations to more than three functions. Adv. Math. 20(2), 151–173 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brazitikos, S., Dann, S., Giannopoulos, A., Koldobsky, A.: On the average volume of sections of convex bodies. Israel J. Math. (2017). arXiv:1607.04862v1. https://doi.org/10.1007/s11856-017-1561-4

  13. Brazitikos, S., Giannopoulos, A., Liakopoulos, D.M.: Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies. arXiv:1606.03779v1 (2016) (To appear in Adv. Geom.)

  14. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Approximation of diameters: randomization doesn’t help. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science (FOCS’98), pp. 244–251. IEEE (1998)

  15. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Deterministic and randomized polynomial-time approximation of radii. Mathematika 48(1–2), 63–105 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Grundlehren der Mathematischen Wissenschaften, vol. 285. Springer, New York (1988)

  17. Burger, T., Gritzmann, P.: Finding optimal shadows of polytopes. Discrete Comput. Geom. 24(2–3), 219–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burger, T., Gritzmann, P., Klee, V.: Polytope projection and projection polytopes. Am. Math. Monthly 103(9), 742–755 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Campi, S., Gardner, R.J., Gronchi, P.: Reverse and dual Loomis–Whitney-type inequalities. Trans. Am. Math. Soc. 368(7), 5093–5124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Campi, S., Gronchi, P.: Estimates of Loomis–Whitney type for intrinsic volumes. Adv. Appl. Math. 47(3), 545–561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chakerian, G.D.: The mean volume of boxes and cylinders circumscribed about a convex body. Israel J. Math. 12, 249–256 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chan, C.K., Tan, S.T.: Determination of the minimum bounding box of an arbitrary solid: an iterative approach. Comput. Struct. 79(15), 1433–1449 (2001)

    Article  Google Scholar 

  23. Combettes, P.: The foundations of set theoretic estimation. Proc. IEEE 81(2), 182–208 (1993)

    Article  Google Scholar 

  24. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5), 967–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dyer, M., Frieze, A.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proceedings of the 21st Annual ACM Symposium on the Theory of Computing (STOC’89), vol. 17, pp. 375–381. ACM, New York (1989)

  27. Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ellis, D., Friedgut, E., Kindler, G., Yehudayoff, A.: Geometric stability via information theory. Discrete Anal. 2016, Art. No. 10 (2016)

  29. Freeman, H., Shapira, H.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 18, 409–413 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and Its Applications, vol. 58, 2nd edn. Cambridge University Press, New York (2006)

    Google Scholar 

  31. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  32. Giannopoulos, A., Koldobsky, A., Valettas, P.: Inequalities for the surface area of projections of convex bodies. arXiv:1601.05600v1 (2016) (To appear in Canadian J. Math.)

  33. Gritzmann, P., Hufnagel, A.: On the algorithmic complexity of Minkowski’s reconstruction theorem. J. Lond. Math. Soc. 59(3), 1081–1100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: I. Containment problems. Discrete Math. 136(1–3), 129–174 (1994). Reprinted in Trends in Discrete Mathematics (W. Deuber, H. J. Proemel, and B. Voigt, editors), North-Holland, Amsterdam (1995)

  35. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: II. Volume and Mixed Volumes. In: Bisztriczky, T., et al. (eds.) Polytopes: Abstract, Convex and Computational. NATO Science Series. Series C: Mathematical and Physical Sciences, vol. 440, pp. 373–466. Kluwer, Dordrecht (1994)

    Google Scholar 

  36. Gritzmann, P., Klee, V.: Computational convexity. In: Goodman, J.E., et al. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn., pp. 937–968. CRC Press, Boca Raton (2017)

  37. Gromov, M.: Entropy and isoperimetry for linear and non-linear group actions. Groups Geom. Dyn. 2(4), 499–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hegde, C., Wakin, M.B., Baraniuk, R.G.: Random projections for manifold learning. In: Platt, J.C., et al. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 641–648. Curran Associates, Newry (2008)

    Google Scholar 

  39. Huebner, K., Ruthotto, S., Kragic, D.: Minimum volume bounding box decomposition for shape approximation in robot grasping. In: IEEE International Conference on Robotics and Automation (ICRA’08), pp. 1628–1633. Institute of Electrical and Electronics Engineers (2008)

  40. Khachiyan, L.G.: On the complexity of computing the volume of a polytope. Izvestia Akad. Nauk. SSSR Eng. Cybern. 3, 216–217 (1988)

    Google Scholar 

  41. Khachiyan, L.G.: The problem of computing the volume of polytopes is \(\#\)P-hard. [The problem of calculating the volume of a polyhedron is enumerably hard.]. Russ. Math. Surv. 44(3), 199–200 (1989)

    Article  MATH  Google Scholar 

  42. Koldobsky, A., Saroglou, C., Zvavitch, A.: Estimating volume and surface area of a convex body via projections or sections. arXiv:1611.08921v1 (2016)

  43. Lawrence, J.: Polytope volume computation. Math. Comput. 57(195), 259–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc. 55, 961–962 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  45. Martini, H.: Some characterizing properties of the simplex. Geom. Dedicata 29(1), 1–6 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Martini, H., Weißbach, B.: Zur besten Beleuchtung konvexer Polyeder. Beitr. Algebra Geom. 17, 151–168 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10(3–4), 327–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Meyer, M.: A volume inequality concerning sections of convex sets. Bull. Lond. Math. Soc. 20(2), 151–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Milanese, M., Vicino, A.: Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica J. IFAC 27(6), 997–1009 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  50. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57(4), 447–495 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  51. Minkowski, H.: Volumen und Oberfläche. Ges. Abh. Bd. II. Leipzig u. Berlin, pp. 230–276. Kluwer, Dordrecht (1911)

  52. O’Rourke, J.: Finding minimal enclosing boxes. Int. J. Comput. Inform. Sci. 14(3), 183–199 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ostro, S.J., Connelly, R.: Convex profiles from asteroid lightcurves. Icarus 57(3), 443–463 (1984)

    Article  Google Scholar 

  54. Petty, C.M.: Isoperimetric problems. In: Proceedings of the Conference on Convexity and Combinatorial Geometry, pp. 26–41. University of Oklahoma, Norman (1971)

  55. Rogers, C.A., Shephard, G.C.: Convex bodies associated with a given convex body. J. Lond. Math. Soc. 33(2), 270–281 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schneider, R.: The mean surface area of the boxes circumscribed about a convex body. Ann. Polon. Math. 25, 325–328 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 151, 2nd edn. Cambridge University Press, Cambridge (2014)

  58. Schneider, R., Weil, W.: Zonoids and related topics. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and Its Applications, pp. 296–317. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  59. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986)

    Google Scholar 

  60. Shepherd, T.J., Rankin, A.H., Alderton, D.H.M.: A Practical Guide to Fluid Inclusion Studies. Blackie Academic & Professional, Glasgow (1985)

    Google Scholar 

  61. Vedel, J.E.B.: Local Stereology. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  62. Zhang, G.Y.: Restricted chord projection and affine inequalities. Geom. Dedicata 39(2), 213–222 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their valuable comments on a previous version of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gritzmann.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campi, S., Gritzmann, P. & Gronchi, P. On the Reverse Loomis–Whitney Inequality. Discrete Comput Geom 60, 115–144 (2018). https://doi.org/10.1007/s00454-017-9949-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9949-9

Keywords

Mathematics Subject Classification

Navigation