Skip to main content
Log in

From a (p, 2)-Theorem to a Tight (pq)-Theorem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A family \(\mathcal {F}\) of sets is said to satisfy the (pq)-property if among any p sets of \(\mathcal {F}\) some q have a non-empty intersection. The celebrated (pq)-theorem of Alon and Kleitman asserts that any family of compact convex sets in \(\mathbb {R}^d\) that satisfies the (pq)-property for some \(q \ge d+1\), can be pierced by a fixed number (independent of the size of the family) \(f_d(p,q)\) of points. The minimum such piercing number is denoted by \(\mathsf {HD} _d(p,q)\). Already in 1957, Hadwiger and Debrunner showed that whenever \(q>\frac{d-1}{d}\,p+1\) the piercing number is \(\mathsf {HD} _d(p,q)=p-q+1\); no tight bounds on \(\mathsf {HD} _d(p,q)\) were found ever since. While for an arbitrary family of compact convex sets in \(\mathbb {R}^d\), \(d \ge 2\), a (p, 2)-property does not imply a bounded piercing number, such bounds were proved for numerous specific classes. The best-studied among them is the class of axis-parallel boxes in \(\mathbb {R}^d\), and specifically, axis-parallel rectangles in the plane. Wegner (Israel J Math 3:187–198, 1965) and (independently) Dol’nikov (Sibirsk Mat Ž 13(6):1272–1283, 1972) used a (p, 2)-theorem for axis-parallel rectangles to show that \(\mathsf {HD} _\mathrm{{rect}}(p,q)=p-q+1\) holds for all \(q \ge \sqrt{2p}\). These are the only values of q for which \(\mathsf {HD} _\mathrm{{rect}}(p,q)\) is known exactly. In this paper we present a general method which allows using a (p, 2)-theorem as a bootstrapping to obtain a tight (pq)-theorem, for classes with Helly number 2, even without assuming that the sets in the class are convex or compact. To demonstrate the strength of this method, we show that \(\mathsf {HD} _{d\text {-box}}(p,q)=p-q+1\) holds for all \(q > c' \log ^{d-1} p\), and in particular, \(\mathsf {HD} _\mathrm{{rect}}(p,q)=p-q+1\) holds for all \(q \ge 7 \log _2 p\) (compared to \(q \ge \sqrt{2p}\), obtained by Wegner and Dol’nikov more than 40 years ago). In addition, for several classes, we present improved (p, 2)-theorems, some of which can be used as a bootstrapping to obtain tight (pq)-theorems. In particular, we show that any class \(\mathcal {G}\) of compact convex sets in \(\mathbb {R}^d\) with Helly number 2 admits a (p, 2)-theorem with piercing number \(O(p^{2d-1})\), and thus, satisfies \(\mathrm {HD}_{\mathcal {G}}(p,q) = p-q+1\), for a universal constant c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak \(\epsilon \)-nets for convex hulls. Comb. Probab. Comput. 1(3), 189–200 (1992)

    MATH  Google Scholar 

  2. Alon, N., Kalai, G., Matoušek, J., Meshulam, R.: Transversal numbers for hypergraphs arising in geometry. Adv. Appl. Math. 29(1), 79–101 (2002)

    MATH  Google Scholar 

  3. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)

    MATH  Google Scholar 

  4. Alon, N., Kleitman, D.J.: A purely combinatorial proof of the Hadwiger Debrunner \((p,q)\) conjecture. Electron. J. Comb. 4(2), Art. No. 1 (1997)

  5. Bárány, I., Fodor, F., Montejano, L., Oliveros, D., Pór, A.: Colourful and fractional \((p, q)\)-theorems. Discrete Comput. Geom. 51(3), 628–642 (2014)

    MATH  Google Scholar 

  6. Besicovitch, A.S.: On Crum’s problem. J. Lond. Math. Soc. 22, 285–287 (1947)

    MATH  Google Scholar 

  7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

    MATH  Google Scholar 

  8. Chudnovsky, M., Spirkl, S., Zerbib, S.: Piercing axis-parallel boxes. Electron. J. Comb. 25(1). Art. No. 1.70 (2018)

  9. Dol’nikov, V.L.: A certain coloring problem. Sibirsk. Mat. Ž. 13(6), 1272–1283 (1972) (in Russian)

  10. Dumitrescu, A., Jiang, M.: Piercing translates and homothets of a convex body. Algorithmica 61(1), 94–115 (2011)

    MATH  Google Scholar 

  11. Eckhoff, J.: A survey of the Hadwiger–Debrunner \((p, q)\)-problem. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. Algorithms and Combinatorics, vol. 25, pp. 347–377. Springer, Berlin (2003)

    Google Scholar 

  12. Erdős, P., Spencer, J.: Probabilistic Methods in Combinatorics. Probability and Mathematical Statistics, vol. 17. Academic Press, New York (1974)

    MATH  Google Scholar 

  13. Fon-Der-Flaass, D., Kostochka, A.V.: Covering boxes by points. Discrete Math. 120(1–3), 269–275 (1993)

    MATH  Google Scholar 

  14. Govindarajan, S., Nivasch, G.: A variant of the Hadwiger–Debrunner \((p, q)\)-problem in the plane. Discrete Comput. Geom. 54(3), 637–646 (2015)

    MATH  Google Scholar 

  15. Gyárfás, A., Lehel, J.: Covering and coloring problems for relatives of intervals. Discrete Math. 55(2), 167–180 (1985)

    MATH  Google Scholar 

  16. Hadwiger, H., Debrunner, H.: Über eine variante zum Hellyschen satz. Arch. Math. 8(4), 309–313 (1957)

    MATH  Google Scholar 

  17. Hadwiger, H., Debrunner, H.: Combinatorial Geometry in the Plane. Translated by V. Klee. With a new chapter and other additional material supplied by the translator. Holt, Rinehart and Winston, New York (1964)

  18. Haussler, D., Welzl, E.: \(\epsilon \)-Nets and simplex range queries. Discrete Comput. Geom. 2(2), 127–151 (1987)

    MATH  Google Scholar 

  19. Károlyi, G.: On point covers of parallel rectangles. Period. Math. Hung. 23(2), 105–107 (1991)

  20. Keller, C., Smorodinsky, S., Tardos, G.: Improved bounds on the Hadwiger–Debrunner numbers. Israel J. Math. 225(2), 925–945 (2018)

    MATH  Google Scholar 

  21. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a convex body. Discrete Math. 306(18), 2166–2173 (2006)

    MATH  Google Scholar 

  22. Kleitman, D.J., Gyárfás, A., Tóth, G.: Convex sets in the plane with three of every four meeting. Combinatorica 21(2), 221–232 (2001)

    MATH  Google Scholar 

  23. Larman, D., Matoušek, J., Pach, J., Töröcsik, J.: A Ramsey-type result for convex sets. Bull. Lond. Math. Soc. 26(2), 132–136 (1994)

    MATH  Google Scholar 

  24. Matoušek, J.: Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom. 31(2), 251–255 (2004)

    MATH  Google Scholar 

  25. Pinchasi, R.: A note on smaller fractional Helly numbers. Discrete Comput. Geom. 54(3), 663–668 (2015)

    MATH  Google Scholar 

  26. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30(4), 264–286 (1930)

    MATH  Google Scholar 

  27. Scheller, N.: \((p,q)\)-Probleme für quaderfamilien. Master’s thesis, Universität Dortmund (1996)

  28. Tietze, H.: Über das Problem der Nachbargeibiete in Raum. Monatsh. Math. 16, 211–216 (1905)

    MATH  Google Scholar 

  29. Vapnik, V.N.: On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probab. Appl. 16(2), 264–280 (1971)

    MATH  Google Scholar 

  30. Wegner, G.: Über eine kombinatorisch-geometrische Frage von Hadwiger und Debrunner. Israel J. Math. 3, 187–198 (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaya Keller.

Additional information

Editor in Charge: Kenneth Clarkson

C. Keller: Research partially supported by Grant 635/16 from the Israel Science Foundation, by the Shulamit Aloni Post-Doctoral Fellowship of the Israeli Ministry of Science and Technology, and by the Kreitman Foundation Post-Doctoral Fellowship. S. Smorodinsky: Research partially supported by Grant 635/16 from the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, C., Smorodinsky, S. From a (p, 2)-Theorem to a Tight (pq)-Theorem. Discrete Comput Geom 63, 821–847 (2020). https://doi.org/10.1007/s00454-018-0048-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0048-3

Keywords

Mathematics Subject Classification

Navigation