Skip to main content
Log in

Effects of laparoscopic instrument and finger on force perception: a first step towards laparoscopic force-skills training

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

In laparoscopic surgery, no external feedback on the magnitude of the force exerted is available. Hence, surgeons and residents tend to exert excessive force, which leads to tissue trauma. Ability of surgeons and residents to perceive their own force output without external feedback is a critical factor in laparoscopic force-skills training. Additionally, existing methods of laparoscopic training do not effectively train residents and novices on force-skills. Hence, there is growing need for the development of force-based training curriculum.

Objective

As a first step towards force-based laparoscopic skills training, this study analysed force perception difference between laparoscopic instrument and finger in contralateral bimanual passive probing task.

Methods

The study compared the isometric force matching performance of novices, residents and surgeons with finger and laparoscopic instrument. Contralateral force matching paradigm was employed to analyse the force perception capability in terms of relative (accuracy), and constant errors in force matching.

Results

Force perception of experts was found to be better than novices and residents. Interestingly, laparoscopic instrument was more accurate in discriminating the forces than finger. The dominant hand attempted to match the forces accurately, whereas non-dominant hand (NH) overestimated the forces. Further, the NH of experts was found to be most accurate. Furthermore, excessive forces were applied at lower force levels and at very high force levels.

Conclusions

Due to misperception of force, novices and residents applied excessive forces. However, experts had good control over force with both dominant and NHs. These findings suggest that force-based training curricula should not only have proprioception tasks, but should also include bimanual force-skills training exercises in order to improve force perception ability and hand skills of novices and residents. The results can be used as a performance metric in both box and virtual reality based force-skills training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Den Boer KT, Herder JL, Sjoerdsma W, Meijer DW, Gouma DJ, Stassen HG (1999) Sensitivity of laparoscopic dissectors: what can you feel? Surg Endosc 13:869–873

    Article  Google Scholar 

  2. Perreault JO, Cao CGL (2006) Effects of vision and friction on haptic perception. Hum Factors 48:574–586

    Article  PubMed  Google Scholar 

  3. Picod G, Jambon AC, Vinatier D, Dubois P (2005) What can the operator actually feel when performing a laparoscopy? Surg Endosc 19:95–100

    Article  CAS  PubMed  Google Scholar 

  4. Joice P, Hanna GB, Cuschieri A (1998) Errors enacted during endoscopic surgery—a human reliability analysis. Appl Ergon 29:409–414

    Article  CAS  PubMed  Google Scholar 

  5. Tang B, Hanna GB, Cuschieri A (2005) Analysis of errors enacted by surgical trainees during skills training courses. Surgery 138:14–20

    Article  CAS  PubMed  Google Scholar 

  6. Way LW, Stewart L, Gantert W et al (2003) Causes and prevention of laparoscopic bile duct injuries—analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg 237:460–469

    PubMed Central  PubMed  Google Scholar 

  7. Anup R, Balasubramanian KA (2000) Surgical stress and the gastrointestinal tract. J Surg Res 92:291–300

    Article  CAS  PubMed  Google Scholar 

  8. Marucci DD, Shakeshaft AJ, Cartmill JA et al (2000) Grasper trauma during laparoscopic cholecystectomy. Aust N Z J Surg 70:578–581

    Article  CAS  PubMed  Google Scholar 

  9. Reissman P, Tiong-Ann-Teoh Skinner K, Burns JW, Wexner SD (1996) Adhesion formation after laparoscopic anterior resection in a porcine model: a pilot study. Surg Laparosc Endosc Percutan Tech 6:136–139

    Article  CAS  Google Scholar 

  10. Ottermo MV, Øvstedal M, Langø T, Stavdahl Ø, Yavuz Y, Johansen TA, Mårvik R (2006) The role of tactile feedback in laparoscopic surgery. Surg Laparosc Endosc Percutan Tech 16:390–400

    Article  PubMed  Google Scholar 

  11. Richards C, Rosen J, Hannaford B, Pellegrini C, Sinanan M (2000) Skills evaluation in minimally invasive surgery using force/torque signatures. Surg Endosc 14:791–798

    Article  CAS  PubMed  Google Scholar 

  12. Singapogu RB, Smith DE, Long LO, Burg TC, Pagano CC, Burg KJL (2012) Objective differentiation of force-based laparoscopic skills using a novel haptic simulator. J Surg Educ 69:766–773

    Article  PubMed  Google Scholar 

  13. Xin H, Zelek JS, B Carnahan H (2006) Laparoscopic surgery, perceptual limitations and force: a review. First Canadian Student Conference on Biomedical Computing; Kingston, Ontario, Canada

  14. Gaar E (2004) Errors in laparoscopic surgery. J Surg Oncol 88:153–160

    Article  PubMed  Google Scholar 

  15. Singapogu R, DuBose S, Long L et al (2013) Salient haptic skills trainer: initial validation of a novel simulator for training force-based laparoscopic surgical skills. Surg Endosc 27:1653–1661

    Article  PubMed  Google Scholar 

  16. MacFarlane MP, Rosen J, Hannaford B, Pellegrini C, Sinanan MN (1999) Force-feedback grasper helps restore sense of touch in minimally invasive surgery. J Gastrointest Surg 3:278–285

    Article  CAS  PubMed  Google Scholar 

  17. Rosen J, Hannaford B, MacFarlane MP, Sinanan MN (1999) Force controlled and teleoperated endoscopic grasper for minimally invasive surgery: experimental performance evaluation. IEEE Trans Biomed Eng 46:1212–1221

    Article  CAS  PubMed  Google Scholar 

  18. Bholat S, Haluck RS, Murray WB, Gorman PJ, Krummel TM (1999) Tactile feedback is present during minimally invasive surgery. J Am Coll Surg 189:349–355

    Article  CAS  PubMed  Google Scholar 

  19. Xin H (2009) Perception of compliance in laparoscopic surgery. University of Waterloo, Ontario

    Google Scholar 

  20. Winters JM, Crago PE (2011) Biomechanics and neural control of posture and movement. Springer, London

    Google Scholar 

  21. Carson RG, Riek S, Shahbazpour N (2002) Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol 539:913–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gandevia SC, McCloskey DI (1977) Changes in motor commands, as shown by changes in perceived heaviness, during partial curarization and peripheral anaesthesia in man. J Physiol 272:673–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gandevia SC, McCloskey DI (1977) Effects of related sensory inputs on motor performances in man studied through changes in perceived heaviness. J Physiol 272:653–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Walsh LD, Taylor JL, Gandevia SC (2011) Overestimation of force during matching of externally generated forces. J Physiol 589:547–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jones LA (2003) Perceptual constancy and the perceived magnitude of muscle forces. Exp Brain Res 151:197–203

    Article  PubMed  Google Scholar 

  26. Jones LA (1989) Matching forces: constant errors and differential thresholds. Perception 18:681–687

    Article  CAS  PubMed  Google Scholar 

  27. Jones LA, Hunter IW (1983) Effect of fatigue on force sensation. Exp Neurol 81:640–650

    Article  CAS  PubMed  Google Scholar 

  28. Jones LA, Hunter IW (1982) Force sensation in isometric contractions: a relative force effect. Brain Res 244:186–189

    Article  CAS  PubMed  Google Scholar 

  29. Dobbelsteen JJ, Schooleman A, Dankelman J (2007) Friction dynamics of trocars. Surg Endosc 21:1338–1343

    Article  PubMed  Google Scholar 

  30. Dubois P, Thommen Q, Jambon AC (2002) In vivo measurement of surgical gestures. IEEE Trans Biomed Eng 49:49–54

    Article  PubMed  Google Scholar 

  31. Horeman T, Rodrigues SP, Jansen FW, Dankelman J, van den Dobbelsteen JJ (2012) Force parameters for skills assessment in laparoscopy. IEEE Trans Haptics 5:312–322

    Article  Google Scholar 

  32. Horeman T, Rodrigues S, Jansen FW, Dankelman J, Dobbelsteen JJ (2010) Force measurement platform for training and assessment of laparoscopic skills. Surg Endosc 24:3102–3108

    Article  PubMed Central  PubMed  Google Scholar 

  33. Park WH, Leonard C, Li S (2008) Finger force perception during ipsilateral and contralateral force matching tasks. Exp Brain Res 189:301–310

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shergill SS, Bays PM, Frith CD, Wolpert DM (2003) Two eyes for an eye: the neuroscience of force escalation. Science 301:187

    Article  CAS  PubMed  Google Scholar 

  35. Henningsen H, Ende-Henningsen B, Gordon A (1995) Asymmetric control of bilateral isometric finger forces. Exp Brain Res 105:304–311

    CAS  PubMed  Google Scholar 

  36. Adamo D, Scotland S, Martin B (2012) Asymmetry in grasp force matching and sense of effort. Exp Brain Res 217:273–285

    Article  PubMed  Google Scholar 

  37. Elneel FHF, Carter F, Tang B, Cuschieri A (2008) Extent of innate dexterity and ambidexterity across handedness and gender: implications for training in laparoscopic surgery. Surg Endosc 22:31–37

    Article  CAS  PubMed  Google Scholar 

  38. Nieboer TE, Sari V, Kluivers KB, Weinans MJN, Vierhout ME, Stegeman DF (2012) A randomized trial of training the non-dominant upper extremity to enhance laparoscopic performance. Minim Invasive Ther Allied Technol 21:259–264

    Article  PubMed  Google Scholar 

  39. Suleman R, Yang T, Paige J, Chauvin S et al (2010) Hand-eye dominance and depth perception effects in performance on a basic laparoscopic skills set. J Soc Laparoendosc Surg Soc Laparoendosc Surg 14:35–40

    Article  Google Scholar 

  40. Hanna GB, Drew T, Clinch P et al (1997) Psychomotor skills for endoscopic manipulations: differing abilities between right and left-handed individuals. Ann Surg 225:335–338

    Article  Google Scholar 

  41. Grantcharov TP, Bardram L, Funch-Jensen P, Rosenberg J (2003) Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy. Surg Endosc Interv Tech 17:1082–1085

    Article  CAS  Google Scholar 

  42. Powers TW, Bentrem DJ, Nagle AP, Toyama MT, Murphy SA, Murayama KM (2005) Hand dominance and performance in a laparoscopic skills curriculum. Surg Endosc Interv Tech 19:673–677

    Article  CAS  Google Scholar 

  43. Tchantchaleishvili V, Myers PO (2010) Left-handedness—a handicap for training in surgery? J Surg Educ 67:233–236

    Article  PubMed  Google Scholar 

  44. Oms LM, Badia JM (2003) Laparoscopic cholecystectomy in situs inversus totalis: the importance of being left-handed. Surg Endosc Interv Tech 17:1859–1861

    Article  CAS  Google Scholar 

  45. Makay O, Icoz G, Ersin S (2008) Surgeon’s view on the limitations of left-handedness during endoscopic surgery. J Laparoendosc Adv Surg Tech A 18:217–221

    Article  PubMed  Google Scholar 

  46. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  47. Haveran L, Novitsky Y, Czerniach D et al (2007) Optimizing laparoscopic task efficiency: the role of camera and monitor positions. Surg Endosc 21:980–984

    Article  PubMed  Google Scholar 

  48. Matern U, Faist M, Kehl K, Giebmeyer C, Buess G (2005) Monitor position in laparoscopic surgery. Surg Endosc Interv Tech 19:436–440

    Article  CAS  Google Scholar 

  49. Rogers ML, Heath WB, Uy CC, Suresh S, Kaber DB (2012) Effect of visual displays and locations on laparoscopic surgical training task. Appl Ergon 43:762–767

    Article  PubMed  Google Scholar 

  50. Veelen MA, Jakimowicz JJ, Goossens RHM, Meijer DW, Bussmann JBJ (2002) Evaluation of the usability of two types of image display systems, during laparoscopy. Surg Endosc Interv Tech 16:674–678

    Article  CAS  Google Scholar 

  51. Zhou M, Perreault J, Schwaitzberg S, Cao C (2008) Effects of experience on force perception threshold in minimally invasive surgery. Surg Endosc 22(2):510–515

    Article  CAS  PubMed  Google Scholar 

  52. Chase C, Seidler R (2008) Degree of handedness affects intermanual transfer of skill learning. Exp Brain Res 190:317–328

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the surgical residents and expert surgeons of surgical gastroenterology department, Rajiv Gandhi Government General Hospital, Chennai, India, who willingly participated in the experiments. The authors acknowledge the support of Dr. Sandeep in coordinating with the subjects for the experiments. The authors also extend thanks to the editor(s) and anonymous reviewers for their insightful comments towards improving the quality of the manuscript.

Disclosures

M.S.Raghu Prasad, M.Manivanan and S.M Chandramohan have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manivannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghu Prasad, M.S., Manivannan, M. & Chandramohan, S.M. Effects of laparoscopic instrument and finger on force perception: a first step towards laparoscopic force-skills training. Surg Endosc 29, 1927–1943 (2015). https://doi.org/10.1007/s00464-014-3887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3887-x

Keywords

Navigation