Skip to main content
Log in

Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, NY

    MATH  Google Scholar 

  2. Ahmed MO, Corless RM (1997) The method of modified equations in Maple. In: Electronic proceedings of 3rd international IMACS conference on applications of computer algebra, Maui, Hawaii. PS version accessible at http://www.math.unm.edu/ACA/1997/Proceedings/odes/ Ahmed_paper.ps

  3. Brezzi F, Hughes TJR, Marini LD, Russo A, Süli E (1999) A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM J Numer Anal 36:1933–1948

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi F, Russo A (2000) Stabilization techniques for the finite element method. In: Spigler R (eds) Applied and industrial mathematics venice-2, 1998. Kluwer, Dordrecht, pp 47–58

    Google Scholar 

  5. Farhat C, Harari I, Franca L (2001) The discontinuous enrichment method. Comput Methods Appl Mech Eng 190:6455–6479

    Article  MATH  MathSciNet  Google Scholar 

  6. Farhat C, Harari I, Hetmaniuk U (2003) The discontinuous enrichment method for multiscale analysis. Comput Methods Appl Mech Eng 192:3195–3209

    Article  MATH  MathSciNet  Google Scholar 

  7. Felippa CA (2004) A template tutorial. In: Mathisen KM, Kvamsdal T, Okstad KM (eds) Computational mechanics: theory and practice, CIMNE, Barcelona, pp 29–68

  8. Finlayson BM (1972) The methods of weighted residuals and variational principles. Academic Press, NY

    Google Scholar 

  9. Franca L, Farhat C, Lesoinne M, Russo A (1998) Unusual stabilized finite element methods and residual-free-bubbles. Int J Numer Methods Fluids 27:159–168

    Article  MATH  MathSciNet  Google Scholar 

  10. Franca L, Farhat C, Macedo AP, Lesoinne M (1997) Residual-free bubbles for the Helmholtz equation. Int J Numer Methods Eng 40:4003–4009

    Article  MATH  MathSciNet  Google Scholar 

  11. Griffiths D, Sanz-Serna J (1986) On the scope of the method of modified equations. SIAM J Sci Stat Comput 7:994–1008

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolesnikov A, Baker AJ (1999) Efficient implementation of high order methods for the advection-diffusion equation. Proceedings of 3rd ASME/JSME joint fluids engineering conference. San Francisco, CA

  13. Hairer E (1994) Backward analysis of numerical integrators and symplectic methods. Ann Numer Math 1:107–132

    MATH  MathSciNet  Google Scholar 

  14. Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration: structure preserving algorithms for ordinary differential equations. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  15. Harari I, Hughes TJR (1990) Design and analysis of finite element methods for the Helmholtz equation in exterior domains. Appl Mech Rev 43:S366–S373

    Article  Google Scholar 

  16. Harari I, Hughes TJR (1991) Finite element methods for the Helmholtz equation in an exterior domain: model problems. Comput Methods Appl Mech Eng 87:59–96

    Article  MATH  MathSciNet  Google Scholar 

  17. Harari I, Hughes TJR (1992) Galerkin/least-square finite element methods for the reduced wave equation with no reflecting boundary conditions in unbounded domains. Comput Methods Appl Mech Eng 98:411–454

    Article  MATH  MathSciNet  Google Scholar 

  18. Hirt CW (1968) Heuristic stability theory for finite difference equations. J Comp Phys 2:339–342

    Article  MATH  Google Scholar 

  19. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  20. Kloeden PE, Palmer KJ (eds) (1994) Chaotic Numerics. Amer Math Soc, Providence, RI

    MATH  Google Scholar 

  21. Muir T (1960) Theory of determinants. Dover, NY

    Google Scholar 

  22. Lomax H, Kutler P, Fuller FB (1970) The numerical solution of partial differential equations governing convection. AGARDograph 146-70, NATO Advisory Group for Aerospace Research, Brussels

  23. Oñate E, Garcí a J, Idelsohn SR, (1997) Computation of the stabilization parameter for the finite element solution of advective-diffusive problems. Int J Numer Methods Fluids 25:1385–1407

    Article  MATH  Google Scholar 

  24. Oñate E, Garcí a J, Idelsohn SR (1998) Computation of the stabilization parameter for the finite element solution of advective-diffusive problems. In: Ladevèze P, Oden JT (eds) New advances in adaptive computer methods in mechanics. Elsevier, Amsterdam, NL

    Google Scholar 

  25. Oñate E (1998) Derivation of the stabilization equations for advective-diffusive fluid transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267

    Article  MATH  Google Scholar 

  26. Oñate Manzan M (1999) A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. Int J Numer Methods Eng 31:203–207

    MATH  Google Scholar 

  27. Oñate E, Manzan M (2000) Stabilization techniques for finite element analysis of convection-diffusion fluid problems. In: Comini G, Sunden B (eds) Computerised analysis of heat transfer. WIT Press, Southampton, UK

    Google Scholar 

  28. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182:355–370

    Article  MATH  Google Scholar 

  29. Oñate E, Garcí a J (2001) A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191:635–660

    Article  MATH  Google Scholar 

  30. Oñate E (2003) Multiscale computational analysis in mechanics using finite calculus: an introduction. Comput Methods Appl Mech Eng 192:3043–3059

    Article  MATH  Google Scholar 

  31. Oñate E, Taylor RL, Zienkiewicz OC, Rojek J (2003) A residual correction method based on finite calculus. Eng Comput 20:629–658

    Article  MATH  Google Scholar 

  32. Oñate E, Taylor RL, Zienkiewicz OC, Rojek J (2004) Finite calculus formulation for analysis of incompressible solids using linear triangles and tetrahedra. Int J Numer Methods Eng 59:1473–1500

    Article  MATH  Google Scholar 

  33. Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60:255–281

    Article  MATH  Google Scholar 

  34. Oñate E, Garcí a J, Idelsohn SR (2004) Ship Hydrodynamics. In: Hughes TJR, de Borst R, Stein E (eds) Encyclopedia of computational mechanics, vol 2. Wiley, Chichester, pp 579–610

    Google Scholar 

  35. Oñate E, Miquel J, Hauke G (2005) A stabilized finite element method for the one-dimensional advection diffusion-absorption equation using finite calculus. Comput. Meth. Appl. Mech. Eng. accepted

  36. Oñate E, Felippa CA (2005) Variational formulation of the finite calculus equations in solid mechanics, CIMNE Report (in preparation)

  37. Park KC, Flaggs DL (1984) A Fourier analysis of spurious modes and element locking in the finite element method. Comput Methods Appl Mech Eng 42:37–46

    Article  MATH  MathSciNet  Google Scholar 

  38. Park KC, Flaggs DL (1984) An operational procedure for the symbolic analysis of the finite element method. Comput Methods Appl Mech Eng 46:65–81

    Article  MATH  MathSciNet  Google Scholar 

  39. Richtmyer RL, Morton, KW (1967) Difference methods for initial value problems, 2nd edn. Interscience, Wiley, NY

    MATH  Google Scholar 

  40. Roache PJ (1970) Computational fluid mechanics. Hermosa, Albuquerque, NM

    Google Scholar 

  41. Stuart AM, Humphries AR (1996) Dynamic systems and numerical analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  42. Tong P (1969) Exact solution of certain problems by the finite element method. J AIAA 7:179–180

    Article  Google Scholar 

  43. Vujanovic BD, Jones SE (1989) Variational methods in nonconservative phenomena. Academic Press, NY

    MATH  Google Scholar 

  44. Waltz JE, Fulton RE, Cyrus NJ (1968) Accuracy and convergence of finite element approximations. In: Proceedings of 2nd conference on matrix methods in structural mechanics. WPAFB, Ohio. AFFDL TR 68-150, pp 995–1028

  45. Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite difference methods. J Comput Phys 14:159–179

    Article  MATH  MathSciNet  Google Scholar 

  46. Wilf HS (1991) Generating functionology. Academic Press, NY

    Google Scholar 

  47. Wilkinson JH (1961) Error analysis of direct methods of matrix inversion. J ACM 8:281–330

    Article  MATH  MathSciNet  Google Scholar 

  48. Wilkinson JH (1963) Rounding errors in algebraic processes. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  49. Wilkinson JH (1965) The algebraic eigenvalue problem. Oxford University Press, Oxford, UK

    MATH  Google Scholar 

  50. Zienkiewicz OC, Taylor RE (1988) The finite element method, vol I, 4th edn. McGraw-Hill, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Felippa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felippa, C.A., Oñate, E. Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods. Comput Mech 39, 91–111 (2007). https://doi.org/10.1007/s00466-005-0011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0011-z

Keywords

Navigation