Skip to main content
Log in

Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A NURBS (non-uniform rational B-splines)-based isogeometric fluid–structure interaction formulation, coupling incompressible fluids with non-linear elastic solids, and allowing for large structural displacements, is developed. This methodology, encompassing a very general class of applications, is applied to problems of arterial blood flow modeling and simulation. In addition, a set of procedures enabling the construction of analysis-suitable NURBS geometries directly from patient-specific imaging data is outlined. The approach is compared with representative benchmark problems, yielding very good results. Computation of a patient-specific abdominal aorta is also performed, giving qualitative agreement with computations by other researchers using similar models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj C, Wu Q, Xu G (2003) Level set based volumetric anisotropic diffusion. ICES Report 03-10, UT Austin

  2. Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sciences (in press), available as ICES Report 06-04, UT Austin

  3. Bazilevs Y, Hughes TJR (2006) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids (In press), published online

  4. Brooks AN, Hughes TJR (1982) Streamline upwind / Petrov– Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  5. Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulation of bypass transistion. PhD thesis, Department of Civil and Environmental Engineering, Stanford University

  6. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–75

    Article  MATH  MathSciNet  Google Scholar 

  7. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2005) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng (In press), available as ICES Report 05-27, UT Austin

  8. Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamics fluid– structure interactions. Comput Methods Appl Mech Eng 33:689–723

    Article  MATH  Google Scholar 

  9. Farhat C, Geuzaine P (2004) Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Comput Methods Appl Mech Eng 193:4073–4095, 2004

    Google Scholar 

  10. Farhat C, Geuzaine P, Grandmont C (2001) The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J Comput Phys 174(2):669–694

    Article  MATH  MathSciNet  Google Scholar 

  11. Farin GE (1995) NURBS Curves and Surfaces: from Projective Geometry to Practical Use. Peters AK, Natick

    Google Scholar 

  12. Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142

    Article  Google Scholar 

  13. Fernandez MA, Salsac A-V (2006) Numerical investigation of the effects of the wall compliance on the wall shear stress distribution in abdominal aortic aneurisms (in preparation)

  14. Figueroa A, Vignon-Clementel IE, Jansen KE, Hughes TJR, (2005) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng (in press)

  15. Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appli Mech Eng 191:561–582

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical images. Comput Struct 83:155–165

    Article  Google Scholar 

  17. Goswami S, Dey TK, Bajaj CL (2006) Identifying planar and cylindrical regions of a shape by unstable manifold 11th ACM Solid and Physical Modeling Symposium (to appear)

  18. Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid–structure interaction in flexible tubes. Int J Numer Methods Eng 64:1575–1593

    Article  MATH  MathSciNet  Google Scholar 

  19. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–stokes equations. Int J Numer Methods Fluids 22:325–352

    Article  MATH  MathSciNet  Google Scholar 

  20. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  21. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Mineola

    Google Scholar 

  22. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian– Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  23. Hughes TJR, Calo VM, Scovazzi G (2004). Variational and multiscale methods in turbulence. In: Gutkowski W, Kowalewski TA, (eds). Proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM). Kluwer, Newyork

    Google Scholar 

  24. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  25. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    Article  MathSciNet  Google Scholar 

  26. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  27. Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. In: Proceedings of SIGGRAPH, pp 339–346

  28. Kuhl E, Hulshoff S, de Borst R (2003) An Arbitrary Lagrangian-Eulerian finite element approach for fluid–structure interaction phenomena. Int J Numer Methods Eng 57:117–142

    Article  MATH  Google Scholar 

  29. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190:3039–3068

    Article  MATH  Google Scholar 

  30. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH, pp 163–169

  31. Nobile F (2001) Numerical approximation of fluid–structure interaction problems with application to haemodynamics PhD thesis, EPFL

  32. Piegl L, Tiller W (1997) The NURBS Book (Monographs in Visual Communication). 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Rogers DF (2001) An Introduction to NURBS with Historical Perspective. Academic, San Diego

    Google Scholar 

  34. Saad Y (1996) Iterative Methods for Sparse Linear Systems. PWS Albany

  35. Salsac A-V, Fernandez MA, Chomaz J-M, Le Tallec P (2005) Effects of the flexibility of the arterial wall on the wall shear stress and wall tension in abdominal aortic aneurysms. In: Proceedings of 58th annual meeting of the division of fluid dynamics, Chicago November 2005

  36. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  37. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  38. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032

    Article  MATH  Google Scholar 

  39. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196

    Article  MATH  MathSciNet  Google Scholar 

  40. Tezduyar TE, Behr M, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space–time procedure. I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351

    Article  MATH  MathSciNet  Google Scholar 

  41. Tezduyar TE, Behr M, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space–time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371

    Article  MATH  MathSciNet  Google Scholar 

  42. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    Article  MATH  MathSciNet  Google Scholar 

  43. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the stabilized finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/ AMD-vol 143. ASME, New York: pp 7–24

  44. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  45. Tomasi C, Madcuchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision, pp 839

  46. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231

    Google Scholar 

  47. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195:1885–1895

    Article  MATH  MathSciNet  Google Scholar 

  48. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech (in press)

  49. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Influence of the wall elasticity in patient-specific hemodynamic simulations. Comput Fluids (in press), published online

  50. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2005) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng (in press)

  51. White F (1974) Viscous Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  52. Yu Z, Bajaj C (2002) Image segementation using gradient vector diffusion and region merging. In: 16th international conference on pattern recognition, vol 2, pp 941–944

  53. Yu Z, Bajaj C (2004) A fast and adaptive algorithm for image contrast enhancement. In: IEEE international conference on image processing (ICIP’04), vol 2, pp 1001–1004

  54. Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MATH  MathSciNet  Google Scholar 

  55. Zhang Y, Bazilevs Y, Bajaj C, Hughes TJR (2006) Patient-specific vascular NURBS modeling for Isogeometric Analysis of blood flow. ICES Report 06–07

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. R. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazilevs, Y., Calo, V.M., Zhang, Y. et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow. Comput Mech 38, 310–322 (2006). https://doi.org/10.1007/s00466-006-0084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0084-3

Keywords

Navigation