Skip to main content
Log in

A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a three-dimensional meshfree method for arbitrary crack initiation and propagation that ensures crack path continuity for non-linear material models and cohesive laws. The method is based on a local partition of unity. An extrinsic enrichment of the meshfree shape functions is used with discontinuous and near-front branch functions to close the crack front and improve accuracy. The crack is hereby modeled as a jump in the displacement field. The initiation and propagation of a crack is determined by the loss of hyperbolicity or the loss of material stability criterion. The method is applied to several static, quasi-static and dynamic crack problems. The numerical results very precisely replicate available experimental and analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso A, Valli A (1997) A domain decomposition approach for heterogenous time-harmonic maxwell equations. Comput Methods Appl Mech Eng 143:97–112

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso A, Valli A (1999) An optimal domain decomposition preconditioner for low-frequency maxwell equations. Math Comput 68:607–631

    Article  MATH  MathSciNet  Google Scholar 

  3. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788

    Article  MATH  Google Scholar 

  4. Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report 81-13, Department of Structural Engineering Cornell University Ithaka

  5. Beck R, Hiptmair R, Hoppe RHW, Wohlmuth B (2000) Residual based a posteriori error estimators for eddy current computation. Math Model Numer Anal 34:159–182

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellec J, Dolbow JE (2003) A note on enrichment functions for modelling crack nucleation. Commun Numer Methods Eng 19:921–932

    Article  MATH  Google Scholar 

  7. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Belytschko T, Moes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4):993–1013

    Article  MATH  Google Scholar 

  10. Bordas S (2003) Extended finite element and level set methods with applications to growth of cracks and biofilms. PhD Thesis, Northwestern University

  11. Bordas S, Moran B (2006) Extended finite element and level set method for damage tolerance assessment of complex structures: an object-oriented approach. EFM (in press)

  12. Bordas S, Legay A (2005) Enriched finite element short course: class notes. In: The extended finite element method, a new approach to numerical analysis in mechanics: course notes. Organized by S. Bordas and A. Legay through the EPFL school of continuing education, Lausanne, Switzerland

  13. Cervenka J (1994) Discrete crack modeling in concrete structures. PhD Thesis, University of Colorado

  14. Chevrier P, Klepaczko JR (1999) Spall fracture: Mechanical and microstructural aspects. Eng Fract Mech 63:273–294

    Article  Google Scholar 

  15. Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845–869

    Article  MathSciNet  Google Scholar 

  16. Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersection cracks with the extended finite element method. Int J Numer Methods Eng 48:1731–1760

    Article  Google Scholar 

  17. Demkovicz L, Vardapetyan L (1998) Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput Methods Appl Mech Eng 152:103–124

    Article  Google Scholar 

  18. Devloo P, Oden TJ, Pattani P (1988) An h-p adaptive finite element method for the numerical simulation of compressible flow. Comput Methods Appl Mech Eng 70(2):203–235

    Article  MATH  MathSciNet  Google Scholar 

  19. Duflot M (2006) A meshless method with enriched weight functions for three-dimensional crack propagation. Int J Numer Methods Eng 65(12):1970–2006

    Article  Google Scholar 

  20. Galdos R (1997) A finite element technique to simulate the stable shape evolution of planar cracks with an application to a semi-elliptical surface crack in a bimaterial finite solid. Int J Numer Methods Eng 40:905–917

    Article  MATH  Google Scholar 

  21. Gasser TC, Holzapfel GA (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput Methods Appl Mech Eng 194:2859–2896

    Article  MATH  Google Scholar 

  22. Gravouil A, Moes N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—Part II: Level set update. Int J Numer Methods Eng 53:2569–2586

    Article  Google Scholar 

  23. Hiptmair R (1998) Multigrid method for maxwell’s equations. SIAM J Numer Anal 36:204–225

    Article  MATH  MathSciNet  Google Scholar 

  24. Houston P, Perugia H, Schötzau D (2005) Energy norm a posteriori error estimation for mixed discontinuous galerkin approximations of the maxwell operator. Comput Methods Appl Mech Eng 194:499–510

    Article  MATH  Google Scholar 

  25. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of 7th International Symposium on Ballistics

  26. Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185–195

    Google Scholar 

  27. Krysl P, Belytschko T (1999) The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44(6):767–800

    Article  MATH  Google Scholar 

  28. Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. In: Proceedings ICM 1

  29. Li S, Simonson Bo C (2004) Meshfree simulation of ductile crack propagation. Int J Comput Methods Eng Sci Mech 6:1–19

    Article  MATH  Google Scholar 

  30. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle method for structural dynamics. Int J Numer Methods Eng 38:1665–1679

    MathSciNet  Google Scholar 

  31. Liu WK, Li S, Belytschko T (1997) Moving least square reproducing kernel method. (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    Article  MATH  MathSciNet  Google Scholar 

  32. Liu Y, Murakami S, Kanagawa Y (1994) Mesh-dependence and stress singularity in finite element analysis of creep crack growth by continuum damage mechanics approach. Eur J Mech A/Solids 13:395–417

    MATH  Google Scholar 

  33. Lo SH, Dong CY, Cheung YK (2005) Integral equation approach for 3d multiple crack problems. Eng Fract Mech 72:1830–1840

    Article  Google Scholar 

  34. Loehner R (2001) Applied CFD techniques: an introduction based on finite element methods. Wiley, New York

    Google Scholar 

  35. Martha LF, Wawrzynek PA, Ingraffea AR (1993) Arbitrary crack representation using solid modeling. Eng Comput 9:63–82

    Article  Google Scholar 

  36. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):133–150

    Article  Google Scholar 

  37. Moes N, Gravouil A, Belytschko T (2002) Non-planar 3-D crack growth by the extended finite element method and level sets, Part I: Mechanical model. Int J Numer Methods Eng 53(11):2549–2568

    Article  MATH  Google Scholar 

  38. Monk P (1994) On the p- and hp-extension of nedelec’s curl-conforming elements. J Comput Appl Math 53:117–137

    Article  MATH  MathSciNet  Google Scholar 

  39. Monk P (1998) A posteriori error indicators for maxwell’s equations. J Comput Appl Math 100:173–190

    Article  MATH  MathSciNet  Google Scholar 

  40. Ogden RW (1984) Non-linear elastic deformations. Halsted, New York

    Google Scholar 

  41. Oliver J, Huespe AE, Snchez PJ (2006) A comparative study on finite elements for capturing strong discontinuities: E-fem vs. x-fem. Comput Methods Appl Mech Eng (in press)

  42. Rabczuk T, Areias PMA, Belytschko T (2006) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng (submitted)

  43. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63(11):1559–1582

    Article  MATH  MathSciNet  Google Scholar 

  44. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063

    Article  MATH  MathSciNet  Google Scholar 

  45. Rachowicz W, Demkovicz L (2000) An hp-adaptive finite element method for electromagnetics—Part I: Data structure and constrained approximation. Comput Methods Appl Mech Eng 187:307–335

    Article  MATH  Google Scholar 

  46. Rachowicz W, Demkovicz L (2002) An hp-adaptive finite element method for electromagnetics-part ii: a 3d implementation. Int J Numer Methods Eng 53:147–180

    Article  MATH  Google Scholar 

  47. Simkins DC Jr, Li S (2006) Meshfree simulations of ductile failure under thermal-mechanical loads. Comput Mech 3:235–249

    Article  Google Scholar 

  48. Sukumar N, Moran B, Black T, Belytschko T (1997) An element-free Galerkin method for three-dimensional fracture mechanics. Comput Mech 20:170–175

    Article  MATH  Google Scholar 

  49. Teng X, Wierzbicki T, Hiermaier S, Rohr I (2005) Numerical prediction of fracture in the Taylor test. Int J Solids Struct 42:1919–1948

    Google Scholar 

  50. Vardapetyan L, Demkovicz L (1999) hp-adaptive finite elements in electromagnetics. Comput Methods Appl Mech Eng 169:331–344

    Article  MATH  Google Scholar 

  51. Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Methods Eng 54(6):923–944

    Article  MATH  Google Scholar 

  52. Xu G, Bower FP, Ortiz M (1994) An analysis of non-planar crack growth under mixed mode loading. Int J Solids Struct 31:2167–2193

    Article  MATH  Google Scholar 

  53. Xu G, Ortiz M (1993) A variational boundary integral method for the analysis of 3D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops. Int J Numer Methods Eng 36:3675–3701

    Article  MATH  Google Scholar 

  54. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  55. Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Mater Sci Eng 12(1):901–915

    Article  Google Scholar 

  56. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part I: The recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timon Rabczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabczuk, T., Bordas, S. & Zi, G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput Mech 40, 473–495 (2007). https://doi.org/10.1007/s00466-006-0122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0122-1

Keywords

Navigation