Skip to main content
Log in

Topology optimization of thermoelastic structures using level set method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper describes the topology optimization of thermoelastic structures, using level set method. The objective is to minimize the mean compliance of a structure with a material volume constraint. In level set method, free boundary of a structure is considered as design variable, and it is implicitly represented via level set model. Objective function of the optimization problem is defined as a function of the shape of a structure. Sensitivity analysis based on continuum model is conducted with respect to the free boundary, which suggests the steepest descent direction. A geometric energy term is introduced to ensure smooth structural boundary. Augmented Lagrangian multiplier method is adopted to enforce volume constraint. Numerical examples are provided for 2D cases, considering design independent temperature distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    Google Scholar 

  2. Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. C R Acad Sci Paris Serie I 334: 1–6

    MathSciNet  Google Scholar 

  3. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194: 363–393

    Article  MATH  MathSciNet  Google Scholar 

  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1: 193–202

    Article  Google Scholar 

  5. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71: 197–224

    Article  Google Scholar 

  6. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69: 635–654

    Google Scholar 

  7. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  8. Bendsøe MP, Guedes JM, Plaxton S, Taylor JE (1996) Optimization of structure and material properties for solids composed of softening material. Inf J Solids Struct 33(12): 1799–1813

    Article  Google Scholar 

  9. Borrvall T, Petersson J (2001a) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190: 6201–6229

    Article  MATH  MathSciNet  Google Scholar 

  10. Borrvall T, Petersson J (2001b) Topology optimization using regularized intermediate mass density. Comput Methods Appl Mech Eng 190: 4911–4928

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50: 2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  12. Bulman S, Sienz J, Hinton E (2001) Comparisons between algorithms for structural topology optimization using a series of benchmark studies. Comput Struct 79(12): 1203–1218

    Article  Google Scholar 

  13. Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer, New York

    Google Scholar 

  14. Diaz R, Sigmund O (1995) Checkerboards patterns in layout optimization. Struct Optim 10: 10–45

    Article  Google Scholar 

  15. Ding Y (1986) Shape optimization of structures: a literature survey. Comput Struct 24: 984–1004

    Google Scholar 

  16. Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152: 457–492

    Article  MATH  MathSciNet  Google Scholar 

  17. Guedes JM, Taylor JE (1997) On the prediction of material properties and topology for optimal continum structures. Struct Optim 14: 193–199

    Article  Google Scholar 

  18. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11: 1–12

    Article  Google Scholar 

  19. Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57: 517–522

    Article  MathSciNet  Google Scholar 

  20. Hassani B, Hinton E (1999) Homogenization and structural topology optimization: theory, practice and software. Springer, London

    MATH  Google Scholar 

  21. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, New York

    MATH  Google Scholar 

  22. Jiang G-S, Peng D (2000) Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J Sci Comput 21: 2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  23. Jog CS (2002) Topology design of structures using a dual algorithm and a constraint on the perimeter. Int J Numer Methods Eng 54: 1007–1019

    Article  MATH  MathSciNet  Google Scholar 

  24. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130: 203–226

    Article  MATH  MathSciNet  Google Scholar 

  25. Kimia BB, Tennenbaum AR, Zucker SW (1995) Shape, shope and deformations i: the components of two-dimensional shape and reaction-diffusion space. Int J Comput Vis 15: 189–224

    Article  Google Scholar 

  26. Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179: 361–378

    Article  MATH  Google Scholar 

  27. Michell AGM (1904) The limits of economy of material in frame-structures. Philos Magazine 8(6): 589–597

    Google Scholar 

  28. Mitchell IM (2004) A toolbox of level set methods. Tech. Rep. TR-2004-09, Department of Computer Science, University of British Columbia, Canada

  29. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Heidelberg

    MATH  Google Scholar 

  30. Olhoff N, Ronholt E, Scheel J (1998) Topology optimization of three-dimensional structures optimum microstructures. Struct Optim 16: 1–18

    Article  Google Scholar 

  31. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169: 463–502

    Article  MATH  MathSciNet  Google Scholar 

  32. Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  33. Osher S, Santosa F (2001) Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J Comput Phys 171: 272–288

    Article  MATH  MathSciNet  Google Scholar 

  34. Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78: 12–49

    Article  MathSciNet  Google Scholar 

  35. Osher S, Shu C-W (1991) High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J Numer Anal 28: 907–922

    Article  MATH  MathSciNet  Google Scholar 

  36. Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155: 410–438

    Article  MATH  MathSciNet  Google Scholar 

  37. Petersson J (1998) A finite element analysis of optimal variable thichness sheets. SIAM J Numer Anal 36: 1759–1778

    Article  MathSciNet  Google Scholar 

  38. Richards DF, Bloomfield MO, Sen S, Calea TS (2001) Extension velocities for level set based surface profile evolution. J Vacuum Sci Technol A 19(4): 1630–1635

    Article  Google Scholar 

  39. Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38: 1951–1965

    Article  MATH  MathSciNet  Google Scholar 

  40. Rozvany G (1989) Structural design via optimality criteria. Kluwer, Dordrecht

    MATH  Google Scholar 

  41. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisciplinary Optim 21(2): 90–108

    Article  MathSciNet  Google Scholar 

  42. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4: 250–254

    Article  Google Scholar 

  43. Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs on Applied and Computational Mathematics, 2nd edn. Cambridge University Press, Cambridge

  45. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2): 489–528

    Article  MATH  MathSciNet  Google Scholar 

  46. Shu CW, Osher S (1988) Efficient implementation of essentially nonoscillatory shock capturing schemes. J Comput Phys 77: 439–471

    Article  MATH  MathSciNet  Google Scholar 

  47. Sigmund O (1994) Design of material structures using topology optimization. PhD Thesis, Technical University of Denmark, 1994

  48. Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidisciplinary Optim 21(2): 120–127

    Article  Google Scholar 

  49. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-independencies and local minima. Struct Optim 16: 68–75

    Article  Google Scholar 

  50. Sokolowski J, Zolesio JP (1992) Introduction to shape optimization: shape sensitivity analysis. In: Springer Series in Computational Mathematics, vol 10. Springer, New York

  51. Strain J (1999) A fast modular semi-lagrange method for moving interfaces. J Comput Phys 151: 498–533

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang MY, Wang X (2004) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4): 373–395

    MATH  Google Scholar 

  53. Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput Aided Des 37: 321–337

    Article  Google Scholar 

  54. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192: 227–246

    Article  MATH  MathSciNet  Google Scholar 

  55. Wang XM, Wang MY, Guo DM (2004) Structural shape and topology optimization in a level-set framework of region representation. Struct Multidisciplinary Optim 27: 1–19

    Article  MathSciNet  Google Scholar 

  56. Xia Q, Wang MY, Wang SY, Chen SK (2006) Semi-lagrange method for level-set based structural topology and shape optimization. Struct Multidisciplinary Optim 31: 419–429

    Article  MathSciNet  Google Scholar 

  57. Ye JC, Bresler Y, Moulin P (2002) A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int J Comput Vis 50(3): 253–270

    Article  MATH  Google Scholar 

  58. Zowe J, Kočvara M, Bendsøe MP (1997) Free material optimization via mathematical programming. Math Program 79: 445–466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Q., Wang, M.Y. Topology optimization of thermoelastic structures using level set method. Comput Mech 42, 837–857 (2008). https://doi.org/10.1007/s00466-008-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0287-x

Keywords

Navigation