Skip to main content
Log in

Analysis of an efficient finite element method for embedded interface problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A stabilized finite element method based on the Nitsche technique for enforcing constraints leads to an efficient computational procedure for embedded interface problems, in which the finite element mesh need not be aligned with the interface geometry. We consider cases in which the jump of a field across the interface is given, as well as cases in which the primary field on the interface is given. Optimal rates of convergence hold. Representative numerical examples demonstrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chessa J, Smolinski P, Belytschko T (2000) The extended finite element method for solidification problems. Int J Numer Methods Eng 28(5): 339–350

    Google Scholar 

  2. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12): 1741–1760

    Article  MATH  Google Scholar 

  3. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Internat. J Numer Methods Eng 78(2): 229–252. doi:10.1002/nme.2486

    Article  MATH  MathSciNet  Google Scholar 

  4. Dolbow J, Mosso S, Robbins J, Voth T (2008) Coupling volume-of-fluid based interface reconstructions with the extended finite element method. Comput Methods Appl Mech Eng 197: 439–447

    Article  MATH  Google Scholar 

  5. Dolbow JE, Franca L (2008) Residual-free bubbles for embedded Dirichlet problems. Comput Methods Appl Mech Eng 197: 3751–3759

    Article  MathSciNet  Google Scholar 

  6. Dolbow JE, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus responsive hydrogels. Comput Methods Appl Mech Eng 194: 4447–4480

    Article  MATH  MathSciNet  Google Scholar 

  7. Duddu R, Bordas S, Chopp D, Moran B (2008) A combinded extended finite element and level set method for biofilm growth. Int J Numer Methods Eng 74(5): 848–870

    Article  MathSciNet  Google Scholar 

  8. Elias R, Martins M, Coutinho A (2007) Simple finite element-based computation of distance functions in unstructured grids. Int J Numer Methods Eng 72(9): 1095–1110

    Article  MathSciNet  Google Scholar 

  9. Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non- oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152(2): 457–492

    Article  MATH  MathSciNet  Google Scholar 

  10. Fries T (2009) The intrinsic xfem for two-fluid flows. Int J Numer Methods Eng 60: 437–471

    Article  MATH  MathSciNet  Google Scholar 

  11. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48): 5537–5552. doi:10.1016/S0045-7825(02)00524-8

    Article  MATH  MathSciNet  Google Scholar 

  12. Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Methods Eng 61(14): 2508–2535

    Article  MATH  Google Scholar 

  13. Juntunen M, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78(267): 1353–1374. doi:10.1090/S0025-5718-08-02183-2

    MathSciNet  Google Scholar 

  14. Liu X, Fedkiw R, Kang M (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J Comput Phys 160: 151–178

    Article  MATH  MathSciNet  Google Scholar 

  15. Merle R, Dolbow J (2002) Solving thermal and phase change problems with the extended finite element method. Comptu Mech 28(5): 339–350

    Article  MATH  Google Scholar 

  16. Moës N, Bechet E, Tourbier M (2006) Imposing essential boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12): 1641–1669

    Article  MATH  Google Scholar 

  17. Moës N, Cloirec M, Cartraud P, Remacle J (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(3): 3163–3177

    Article  MATH  Google Scholar 

  18. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    Article  MATH  Google Scholar 

  19. Mourad H, Dolbow J, Garikipati K (2005) An assumed-gradient finite element method for the level-set equation. Int J Numer Methods Eng 8(8): 1009–1032

    Article  MathSciNet  Google Scholar 

  20. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Sem Univ Hamburg 36(1): 9–15. doi:10.1007/BF02995904

    Article  MATH  MathSciNet  Google Scholar 

  21. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6): 868–868. doi:10.1002/nme.1652

    Article  MATH  Google Scholar 

  22. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63: 139–148

    Article  MATH  MathSciNet  Google Scholar 

  23. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3): 339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MATH  MathSciNet  Google Scholar 

  24. Valance S, de Borst R, Rethore J, Coret M (2008) A partition-of-unity-based finite element method for level sets. Int J Numer Methods Eng 76(10): 1513–1527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Harari.

Additional information

AFOSR grant number 09-1-0304.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harari, I., Dolbow, J. Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46, 205–211 (2010). https://doi.org/10.1007/s00466-009-0457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0457-5

Keywords

Navigation