Skip to main content
Log in

A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

NURBS-based isogeometric analysis is applied to 3D frictionless large deformation contact problems. The contact constraints are treated with a mortar-based approach combined with a simplified integration method avoiding segmentation of the contact surfaces, and the discretization of the continuum is performed with arbitrary order NURBS and Lagrange polynomial elements. The contact constraints are satisfied exactly with the augmented Lagrangian formulation proposed by Alart and Curnier, whereby a Newton-like solution scheme is applied to solve the saddle point problem simultaneously for displacements and Lagrange multipliers. The numerical examples show that the proposed contact formulation in conjunction with the NURBS discretization delivers accurate and robust predictions. In both small and large deformation cases, the quality of the contact pressures is shown to improve significantly over that achieved with Lagrange discretizations. In large deformation and large sliding examples, the NURBS discretization provides an improved smoothness of the traction history curves. In both cases, increasing the order of the discretization is either beneficial or not influential when using isogeometric analysis, whereas it affects results negatively for Lagrange discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92: 353–375

    Article  MATH  MathSciNet  Google Scholar 

  2. Bazilevs Y, Hughes T (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs Y, Calo V, Hughes T, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms and computations. Comput Mech 43: 3–37

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazilevs Y, Gohean J, Hughes T, Moser R, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MATH  MathSciNet  Google Scholar 

  5. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199: 229–263

    Article  MATH  MathSciNet  Google Scholar 

  6. Buffa A, Sangalli G, Vazquez R (2010) Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng 199: 1143–1152

    Article  MATH  MathSciNet  Google Scholar 

  7. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, New York

    Book  Google Scholar 

  8. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng. doi:10.1002/nme.3159

  9. De Lorenzis L, Zavarise G (2008) Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements. Int J Solids Struct 45: 5419–5436

    Article  MATH  Google Scholar 

  10. McDevitt TW, Laursen T (2000) A mortar finite element formulation for frictional contact problems. Int J Numer Methods Eng 48: 1525–1547

    Article  MATH  MathSciNet  Google Scholar 

  11. El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79: 1473–1486

    Article  Google Scholar 

  12. Eterovic AL, Bathe KJ (1991) An interface interpolation scheme for quadratic convergence in the finite element analysis of contact problems. In: Computational methods in nonlinear mechanics. Springer, Berlin, pp 703–715

  13. Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36: 226–244

    Article  MATH  Google Scholar 

  14. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 2006: 5020–5036

    Article  MathSciNet  Google Scholar 

  15. Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45: 513–522

    Article  MATH  Google Scholar 

  16. Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77: 1468–1500

    Article  MATH  MathSciNet  Google Scholar 

  17. Hüeber S, Wohlmuth BI (2005) A primal–dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194: 3147–3166

    Article  MATH  Google Scholar 

  18. Hüeber S, Wohlmuth BI (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Methods Appl Mech Eng 198: 1338–1350

    Article  MATH  Google Scholar 

  19. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  20. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199: 301–313

    Article  MATH  MathSciNet  Google Scholar 

  21. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  22. Konyukhov A, Schweizerhof K (2009) Incorporation of contact for high-order finite elements in covariant form. Comput Methods Appl Mech Eng 198: 1213–1223

    Article  MATH  MathSciNet  Google Scholar 

  23. Krstulovic-Opara L, Wriggers P, Korelc J (2002) A C1-continuous formulation for 3D finite deformation frictional contact. Comput Mech 29: 27–42

    Article  MATH  MathSciNet  Google Scholar 

  24. Landon RL, Hast MW, Piazza SJ (2009) Robust contact modeling using trimmed NURBS surfaces for dynamic simulations of articular contact. Comput Methods Appl Mech Eng 198: 2339–2346

    Article  Google Scholar 

  25. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  26. Lengiewicz J, Korelc J, Stupkiewicz S (2011) Automation of finite element formulations for large deformation contact problems. Int J Numer Methods Eng 85: 1252–1279

    MATH  MathSciNet  Google Scholar 

  27. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200: 726–741

    Article  MATH  Google Scholar 

  28. Padmanabhan V, Laursen T (2001) A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elements Anal Design 37: 173–198

    Article  MATH  Google Scholar 

  29. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94: 373–389

    Article  MATH  Google Scholar 

  30. Piegl L, Tiller W (1996) The NURBS Book, 2nd edn. Springer, Berlin

    Google Scholar 

  31. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangean treatment. Comput Methods Appl Mech Eng 177: 351–381

    Article  MATH  MathSciNet  Google Scholar 

  32. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193: 4891–4913

    Article  MATH  MathSciNet  Google Scholar 

  33. Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197: 555–566

    Article  MATH  MathSciNet  Google Scholar 

  34. Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng. doi:10.1002/nme.3126

  35. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50: 163–180

    Article  MATH  MathSciNet  Google Scholar 

  36. Stadler M, Holzapfel GA, Korelc J (2003) C n continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng 57: 2177–2203

    Article  MATH  Google Scholar 

  37. Stupkiewicz S, Lengiewicz J, Korelc J (2010) Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Comput Methods Appl Mech Eng 199: 2165–2176

    Article  MathSciNet  Google Scholar 

  38. Taylor RL, Papadopoulos P (1991) On a patch test for contact problems in two dimensions. In: Wriggers P, Wanger W (eds) Computational methods in nonlinear mechanics. Springer, Berlin, pp 690–702

    Google Scholar 

  39. Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198: 2860–2873

    Article  MathSciNet  Google Scholar 

  40. Wriggers P, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200: 1100–1112

    Article  MATH  MathSciNet  Google Scholar 

  41. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  42. Wriggers P, Krstulovic-Opara L, Korelc J (2001) Smooth C1-interpolations for two-dimensional frictional contact problems. Int J Numer Methods Eng 51: 1469–1495

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62: 1183–1225

    Article  MATH  MathSciNet  Google Scholar 

  44. Zavarise G, De Lorenzis L (2009) The node-to-segment algorithm for 2D frictionless contact: Classical formulation and special cases. Comput Methods Appl Mech Eng 198: 3428–3451

    Article  MathSciNet  Google Scholar 

  45. Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79: 379–416

    Article  MATH  Google Scholar 

  46. Zavarise G, Wriggers G (1998) A segment-to-segment contact strategy. Math Comput Model 28: 497–515

    Article  MATH  Google Scholar 

  47. Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) A numerical model for thermomechanical contact based on microscopic interface laws. Mech Res Commun 19(3): 173–182

    Article  MATH  Google Scholar 

  48. Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes T (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196: 2943–2959

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. De Lorenzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lorenzis, L., Wriggers, P. & Zavarise, G. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49, 1–20 (2012). https://doi.org/10.1007/s00466-011-0623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0623-4

Keywords

Navigation