Skip to main content
Log in

Refined h-adaptive finite element procedure for large deformation geotechnical problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Adaptive finite element procedures automatically refine, coarsen, or relocate elements in a finite element mesh to obtain a solution with a specified accuracy. Although a significant amount of research has been devoted to adaptive finite element analysis, this method has not been widely applied to nonlinear geotechnical problems due to their complexity. In this paper, the h-adaptive finite element technique is employed to solve some complex geotechnical problems involving material nonlinearity and large deformations. The key components of h-adaptivity including robust mesh generation algorithms, error estimators and remapping procedures are discussed. This paper includes a brief literature review as well as formulation and implementation details of the h-adaptive technique. Finally, the method is used to solve some classical geotechnical problems and results are provided to illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allix O, Kerfriden P, Gosselet P (2010) On the control of the load increments for a proper description of multiple delamination in a domain decomposition framework. Int J Numer Methods Eng 83: 1518–1540

    Article  MATH  Google Scholar 

  2. Boroomand B, Zienkiewicz OC (1999) Recovery procedures in error estimation and adaptivity. Part II. Adaptivity in nonlinear problems of elasto-plasticity behaviour. Comput Methods Appl Mech Eng 176: 127–146

    Article  MATH  MathSciNet  Google Scholar 

  3. Burd HJ (1986) A large displacement finite element analysis of a reinforced unpaved road. PhD Thesis. Oxford University, England

  4. Diez P, Huerta A (1999) A unified approach to remeshing strategies for finite element h-adaptivity. Comput Methods Appl Mech Eng 176: 215–229

    Article  MATH  Google Scholar 

  5. Gallimard L, Ladeveze P, Pelle JP (1996) Error estimation and adaptivity in elastoplasticity. Int J Numer Methods Eng 46: 189–217

    Article  MathSciNet  Google Scholar 

  6. Heaney CE, Augarde CE, Deek AJ (2010) Modelling elasto- plasticity using the hybrid MLPG method. Comput Model Eng Sci 56: 153–178

    Google Scholar 

  7. Hu Y, Randolph MF (1998) H-adaptive FE analysis of elasto- plastic non-homogeneous soil with large deformation. Comput Geotech 23: 61–83

    Article  Google Scholar 

  8. Hu Y, Randolph MF (1999) Plate-penetrometer penetration into NC soil using h-adaptive FE method. In: Proceedings of NUMOG VII international symposium on numerical models in geomechanics, A.A. Balkema, The Netherlands, pp 501–506

  9. Hu G, Wriggers P (2002) On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformation. Comput Methods Appl Mech Eng 191: 1333–1348

    Article  MATH  MathSciNet  Google Scholar 

  10. Huerta A, Rodriguez-Ferran A, Diez P, Sarrate J (1999) Adaptive finite element strategies based on error assessment. Int J Numer Methods Eng 46: 1803–1818

    Article  MATH  Google Scholar 

  11. Huerta A, Diez P (2000) Error estimation including pollution assessment for nonlinear finite element analysis. Comput Methods Appl Mech Eng 181: 21–41

    Article  MATH  MathSciNet  Google Scholar 

  12. Khoei AR, Anahid M, Shahin K (2008) An extended arbitrary Lagrangian–Eulerian finite element method for large deformation of solid mechanics. Finite Elements Anal Des 44: 401–416

    Article  Google Scholar 

  13. Khoei AR, Gharehbaghi SA, Tabarraie AR, Riahi A (2007) Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization. Appl Math Model 31: 983–1000

    Article  MATH  Google Scholar 

  14. Khoei AR, Lewis RW (2002) H-adaptive finite element analysis for localization phenomena with reference to metal powder forming. Finite Elements Anal Des 38: 503–519

    Article  MATH  Google Scholar 

  15. Li LY, Bettess P (1997) Adaptive finite element methods: a review. Appl Mech Rev 50: 581–591

    Article  Google Scholar 

  16. Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Geotechnique 37: 271–283

    Article  Google Scholar 

  17. Nazem M, Sheng D, Carter JP (2006) Stress integration and mesh refinement for large deformation in geomechanics. Int J Numer Methods Eng 65: 1002–1027

    Article  MATH  Google Scholar 

  18. Nazem M, Carter JP, Sheng D, Sloan SW (2009) Alternative stress-integration schemes for large-deformation problems of solid mechanics. Finite Elements Anal Des 45(12): 934–943

    Article  Google Scholar 

  19. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79: 763–813

    Article  MATH  MathSciNet  Google Scholar 

  20. Oden JT, Brauchli HJ (1971) On the calculation of consistent stress distributions in finite element approximation. Int J Numer Methods Eng 3: 317–325

    Article  MATH  Google Scholar 

  21. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41: 735–756

    Article  MATH  MathSciNet  Google Scholar 

  22. Onate E, Bugeda G (1993) A study of mesh optimality criteria in adaptive finite element analysis. Eng Comput 10: 307–321

    Article  MathSciNet  Google Scholar 

  23. Peric D, Vaz M Jr, Owen DRJ (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Mech Eng 176: 279–312

    Article  MATH  Google Scholar 

  24. Rannacher R, Suttmeier FT (1999) A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput Methods Appl Mech Eng 176: 333–361

    Article  MATH  MathSciNet  Google Scholar 

  25. Rieger A, Wriggers P (2000) Comparison of different error estimators for contact problems. Eng Comput 17: 255–273

    Article  MATH  Google Scholar 

  26. Runesson K, Ottosen NS, Peric D (1991) Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int J Plast 7: 99–121

    Article  MATH  Google Scholar 

  27. Sheng D, Nazem M, Carter JP (2009) Some computational aspects for solving deep penetration problems in geomechanics. Comput Mech 44: 549–561

    Article  MATH  Google Scholar 

  28. Sheng D, Sloan SW (2001) Load stepping schemes for critical state models. Int J Numer Methods Eng 50(1): 67–93

    Article  MATH  Google Scholar 

  29. Sheng D, Sloan SW (2003) Time stepping schemes for coupled displacement and pore pressure analysis. Comput Mech 31: 122–134

    Article  MATH  Google Scholar 

  30. Sheng D, Sloan SW, Yu HS (2000) Aspects of finite element implementation of critical state models. Comput Mech 26: 185–196

    Article  MATH  Google Scholar 

  31. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry: Toward Geometric Engineering. Lecture Notes in Computer Science, vol 1148. Springer, Berlin, pp 203–222

  32. Sloan SW (1987) Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Methods Eng 24(5): 893–911

    Article  MATH  MathSciNet  Google Scholar 

  33. Sloan SW (1993) A fast algorithm for generating constrained Delaunay triangulations. Comput Struct 47: 441–450

    Article  MATH  Google Scholar 

  34. Sloan SW, Abbo AJ (1999) Biot consolidation analysis with automatic time stepping and error control. Part 1. Theory and implementation. Int J Numer Anal Methods Geomech 23: 467–492

    Article  MATH  Google Scholar 

  35. Sloan SW, Abbo AJ (1999) Biot consolidation analysis with automatic time stepping and error control. Part 2. Applications. Int J Numer Anal Methods Geomech 23: 493–529

    Article  Google Scholar 

  36. Sloan SW, Abbo AJ, Sheng D (2001) Refined explicit integration of elastoplastic models with automatic error control. Eng Comput 18: 121–154, Erratum: Eng Comput 19(5/6):594–594, 2002

    Article  Google Scholar 

  37. Tejchman J, Bauer E (1996) Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comput Geotech 19(3): 221–244

    Article  Google Scholar 

  38. Yu HS (2000) Cavity expansion methods in geomechanics. Kluwer Academic Publishers, The Netherlands

    MATH  Google Scholar 

  39. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24: 337–357

    Article  MATH  MathSciNet  Google Scholar 

  40. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimate. Part I. The recovery technique. Int J Numer Methods Eng 33: 1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  41. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimate. Part II. Error estimates and adaptivity. Int J Numer Methods Eng 33: 1365–1382

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Kardani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardani, M., Nazem, M., Abbo, A.J. et al. Refined h-adaptive finite element procedure for large deformation geotechnical problems. Comput Mech 49, 21–33 (2012). https://doi.org/10.1007/s00466-011-0624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0624-3

Keywords

Navigation