Skip to main content
Log in

A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a quasi-static multiscale computational model with its verification and rational applications to mechanical behavior predictions of asphaltic roadways that are subject to viscoelastic deformation and fracture damage. The multiscale model is based on continuum thermo-mechanics and is implemented using a finite element formulation. Two length scales (global and local) are two-way coupled in the model framework by linking a homogenized global scale to a heterogeneous local scale representative volume element. With the unique multiscaling and the use of the finite element technique, it is possible to take into account the effect of material heterogeneity, viscoelasticity, and anisotropic damage accumulation in the small scale on the overall performance of larger scale structures. Along with the theoretical model formulation, two example problems are shown: one to verify the model and its computational benefits through comparisons with analytical solutions and single-scale simulation results, and the other to demonstrate the applicability of the approach to model general roadway structures where material viscoelasticity and cohesive zone fracture are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masad E, Niranjanan S, Bahia H, Kose S (2001) Modeling and experimental measurements of localized strain distribution in asphalt mixes. J Transp Eng 127(6): 477–485

    Article  Google Scholar 

  2. Papagiannakis AT, Abbas A, Masad E (2002) Micromechanical analysis of viscoelastic properties of asphalt concretes. Transp Res Rec 1789: 113–120

    Article  Google Scholar 

  3. Guddati MN, Feng Z, Kim YR (2002) Towards a micromechanics-based procedure to characterize fatigue performance of asphalt concrete. Transp Res Rec 1789: 121–128

    Article  Google Scholar 

  4. Sadd MH, Dai Q, Parameswaran V, Shukla A (2003) Simulation of asphalt materials using a finite element micromechanical model with damage mechanics. Transp Res Rec 1832: 86–95

    Article  Google Scholar 

  5. Soares BJ, Freitas F, Allen DH (2003) Crack modeling of asphaltic mixtures considering heterogeneity of the material. Transp Res Rec 1832: 113–120

    Article  Google Scholar 

  6. Dai Q, Sadd MH, Parameswaran V, Shukla A (2005) Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis. J Eng Mech 131(7): 668–677

    Article  Google Scholar 

  7. Buttlar W, You Z (2001) Discrete element modeling of asphalt concrete: microfabric approach. Transp Res Rec 1757: 111–118

    Article  Google Scholar 

  8. Kim H, Buttler WG (2005) Micromechanical fracture modeling of hot-mix asphalt concrete based on a disk-shaped compact tension test. Electron J Assoc Asph Paving Technol 74E:209–223

    Google Scholar 

  9. Abbas A, Masad E, Papagiannakis T, Shenoy A (2005) Modeling of asphalt mastic stiffness using discrete elements and micromechanics analysis. Int J Pavement Eng 6(2): 137–146

    Article  Google Scholar 

  10. Fish J, Wagiman A (1993) Multiscale finite element method for a locally non-periodic heterogeneous medium. Comput Mech 12: 164–180

    Article  MathSciNet  MATH  Google Scholar 

  11. Fish J, Belsky V (1995) Multigrid method for periodic heterogeneous media, part II: multiscale modeling and quality control in multidimensional cases. Comput Methods Appl Mech Eng 126: 17–38

    Article  MathSciNet  MATH  Google Scholar 

  12. Oden JT, Zohdi TI (1997) Analysis and adaptive modeling of highly heterogeneous elastic structures. Comput Methods Appl Mech Eng 172: 3–25

    Article  MathSciNet  Google Scholar 

  13. Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16: 344–354

    Article  Google Scholar 

  14. Lee K, Moorthy S, Ghosh S (1999) Multiple scale computational model for damage in composite materials. Comput Methods Appl Mech Eng 172: 175–201

    Article  MATH  Google Scholar 

  15. Oden JT, Vemaganti K, Moes N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 148: 367–391

    Article  Google Scholar 

  16. Feyel F, Chaboche JL (2000) FE2 multiscale approach for modeling the elastoviscoplastic behavior of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183: 309–330

    Article  MATH  Google Scholar 

  17. Fish J, Shek K (2000) Multiscale analysis of composite materials and structures. Compos Sci Technol 60: 2547–2556

    Article  Google Scholar 

  18. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multiscale damage analysis in composite and porous materials. Int J Solids Struct 38: 2335–2385

    Article  MATH  Google Scholar 

  19. Raghavan P, Moorthy S, Ghosh S, Pagano NJ (2001) Revisiting the composite laminate problem with an adaptive multi-level computational model. Compos Sci Technol 61: 1017–1040

    Article  Google Scholar 

  20. Haj-Ali RM, Muliana AH (2004) A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int J Solids Struct 41: 3461–3490

    Article  MATH  Google Scholar 

  21. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  22. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  MathSciNet  Google Scholar 

  23. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531

    Article  MATH  Google Scholar 

  24. Tvergaard V (1990) Effect of fiber debonding in a whisker-reinforced metal. Mater Sci Eng 125(2): 203–213

    Article  Google Scholar 

  25. Geubelle PH, Baylor J (1998) The impact-induced delamination of laminated composites: a 2D simulation. Composites B 29: 589–602

    Article  Google Scholar 

  26. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack propagation analysis. Int J Numer Methods Eng 44(9): 1267–1282

    Article  MATH  Google Scholar 

  27. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. part I: theory and numerical implementation. Mech Mater 35: 333–364

    Article  Google Scholar 

  28. Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57: 891–908

    Article  Google Scholar 

  29. Yoon C, Allen DH (1999) Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid. Int J Fract 96: 55–74

    Article  Google Scholar 

  30. Allen DH, Searcy CR (2000) Numerical aspects of a micromechanical model of a cohesive zone. J Reinf Plast Compos 19(3): 240–248

    Article  Google Scholar 

  31. Allen DH, Searcy CR (2001) A micromechanical model for a viscoelastic cohesive zone. Int J Fract 107: 159–176

    Article  Google Scholar 

  32. Souza FV, Allen DH (2010) Multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks. Int J Numer Methods Eng 82: 464–504

    MathSciNet  MATH  Google Scholar 

  33. Souza FV, Allen DH (2010) Modeling failure of heterogeneous viscoelastic solids under dynamic/impact loading due to multiple evolving cracks using a two-way coupled multiscale model. Mech Time-Dependent Mater 14(2): 125–151

    Article  Google Scholar 

  34. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North Holland, New York

  35. Allen DH (2001) Homogenization principles and their application to continuum damage mechanics. Compos Sci Technol 61: 2223–2230

    Article  Google Scholar 

  36. Kouznetsova VG (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. PhD Dissertation, Technische Universiteit Eindhoven

  37. Zocher MA, Allen DH, Groves SE (1997) A three dimensional finite element formulation for thermoviscoelastic orthotropic media. Int J Numer Methods Eng 40: 2267–2288

    Article  MathSciNet  MATH  Google Scholar 

  38. Seidel GD, Allen DH, Helms KLE, Groves SE (2005) A model for predicting the evolution of damage in viscoelastic particle-reinforced composites. Mech Mater 37: 163–178

    Article  Google Scholar 

  39. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15(2): 79–95

    Article  Google Scholar 

  40. Souza FV (2009) Multiscale modeling of impact on heterogeneous viscoelastic solids with evolving microcracks. PhD Dissertation, University of Nebraska-Lincoln, Nebraska

  41. Kim Y, Lutif JS, Allen DH (2009) Determining representative volume elements of asphalt concrete mixtures without damage. Transp Res Rec 2127: 52–59

    Article  Google Scholar 

  42. Kim Y, Lee J, Lutif JS (2010) Geometrical evaluation and experimental verification to determine representative volume elements of heterogeneous asphalt mixtures. J Test Eval 38(6): 660–666

    Google Scholar 

  43. Kim Y, Aragão FTS, Allen DH, Little DN (2010) Damage modeling of bituminous mixtures through computational micromechanics and cohesive zone fracture. Can J Civ Eng 37: 1125–1136

    Article  Google Scholar 

  44. Aragão FTS (2011) Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture. PhD Dissertation, University of Nebraska, Lincoln, Nebraska

  45. Aragão FTS, Kim Y, Lee J, Allen DH (2011) Micromechanical model for heterogeneous asphalt concrete mixtures subjected to fracture failure. J Mater Civ Eng 23(1): 30–38

    Article  Google Scholar 

  46. Hugo F, Kennedy T (1985) Surface cracking of asphalt mixtures on southern africa. Proc Assoc Asph Paving Technol 54: 454–496

    Google Scholar 

  47. Jacobs M (1995) Crack growth in asphaltic mixes. PhD Dissertation, Delft Institute of Technology, Netherlands

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Rak Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YR., Souza, F.V. & Teixeira, J.E.S.L. A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways. Comput Mech 51, 187–201 (2013). https://doi.org/10.1007/s00466-012-0716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0716-8

Keywords

Navigation