Skip to main content
Log in

Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Distance fields are scalar functions defining the minimum distance of a given point in the space from the boundary of an object. Crack surfaces are geometric entities whose shapes can be arbitrary, often described with ruled surfaces or polygonal subdivisions. The derivatives of distance functions for such surfaces are discontinuous across the surface, and continuous all around the edges. These properties of the distance function were employed to build intrinsic enrichments of the underlying mesh-free discretisation for efficient simulation of three-dimensional crack propagation, removing the limitations of existing criteria (reviewed in this paper). Examples show that the proposed approach is able to introduce quite convoluted crack paths. The incremental nature of the developed approach does not require re-computation of the enrichment for the entire crack surface as advancing crack front extends incrementally as a set of connected surface facets. The concept is based on purely geometric representation of discontinuities thus addressing only the kinematic aspects of the problem, such to allow for any constitutive and cohesive interface models to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Arrea M, Ingraffea A (1982) Mixed-mode crack propagation in mortar and concrete. Technical report. Cornell University, Ithaca, pp 81–13

  2. Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MATH  MathSciNet  Google Scholar 

  3. Baerentzen JA, Aanaes H (2005) Signed distance computation using the angle weighted pseudonormal. IEEE Trans Vis Comput Graph 11(3):243–253

    Article  Google Scholar 

  4. Barbieri E, Meo M (2012) A fast object-oriented matlab implementation of the reproducing kernel particle method. Comput Mech 49(5):581–602

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbieri E, Petrinic N, Meo M, Tagarielli V (2012) A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. Int J Numer Methods Eng 90(2):177–195

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element-free Galerkin method. Comput Struct 71(2):173–195

    Article  MathSciNet  Google Scholar 

  7. Belytschko T, Gu L, Lu Y (1994) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534

    Article  Google Scholar 

  8. Belytschko T, Lu Y, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  10. Brokenshire DR (1996) A study of torsion fracture tests. Ph.D. thesis, Cardiff University, Cardiff

  11. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227

    Article  MATH  MathSciNet  Google Scholar 

  12. De Berg M, Cheong O, Van Kreveld M (2008) Computational geometry: algorithms and applications. Springer, Berlin

    Google Scholar 

  13. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Arch Comput Methods Eng 5(3):207–241

    Article  MathSciNet  Google Scholar 

  14. Duarte CA, Oden JT (1996) Hp clouds: an Hp meshless method. Numer Methods Partial Differ Equ 12(6):673–706

    Article  MATH  MathSciNet  Google Scholar 

  15. Duflot M (2006) A meshless method with enriched weight functions for three-dimensional crack propagation. Int J Numer Methods Eng 65(12):1970–2006

    Article  MATH  Google Scholar 

  16. Duflot M, Nguyen-Dang H (2004) A meshless method with enriched weight functions for fatigue crack growth. Int J Numer Methods Eng 59:1945–1961

    Article  MATH  Google Scholar 

  17. Duflot M, Nguyen-Dang H (2004) Fatigue crack growth analysis by an enriched meshless method. J Comput Appl Math 168(1–2):155–164

    Article  MATH  MathSciNet  Google Scholar 

  18. Fries T, Matthies H (2003) Classification and overview of meshfree methods. Informatikbericht Nr 3. Institute of Scientific Computing, Technical University Braunschweig, Brunswick, Germany

  19. Fries TP, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicitimplicit crack description. Int J Numer Methods Eng 89(12):1527–1558

    Article  MATH  MathSciNet  Google Scholar 

  20. Gasser TC, Holzapfel GA (2006) 3D crack propagation in unreinforced concrete: a two-step algorithm for tracking 3D crack paths. Comput Methods Appl Mech Eng 195(37):5198–5219

    Article  MATH  MathSciNet  Google Scholar 

  21. Goodman JE, O’Rourke J (2010) Handbook of discrete and computational geometry. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  22. Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319

    Article  Google Scholar 

  23. Idelsohn SR, Onate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6):893–912

    Article  MATH  Google Scholar 

  24. Jones MW, Baerentzen JA, Sramek M (2006) 3D distance fields: a survey of techniques and applications. IEEE Trans Vis Comput Graph 12(4):581–599

    Article  Google Scholar 

  25. Kaczmarczyk L, Nezhad MM, Pearce C (2013) Three-dimensional brittle fracture: configurational-force-driven crack propagation. arXiv, arXiv:1304.6136 (preprint)

  26. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MATH  MathSciNet  Google Scholar 

  27. Libersky LD, Petschek A (1991) Smooth particle hydrodynamics with strength of materials. In: Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. Springer, Berlin, pp 248–257

  28. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (i) methodology and convergence. Comput Methods Appl Mech Eng 143(1):113–154

    Article  MATH  MathSciNet  Google Scholar 

  31. Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Google Scholar 

  32. Onate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite point method in computational mechanics: applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    Google Scholar 

  33. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    Article  MATH  Google Scholar 

  34. Ren B, Qian J, Zeng X, Jha A, Xiao S, Li S (2011) Recent developments on thermo-mechanical simulations of ductile failure by meshfree method. Comput Model Eng Sci 71(3):253

    Google Scholar 

  35. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Sukumar N (1998) The natural element method in solid mechanics. Ph.D. thesis, Northwestern University, Chicago

  37. Walters MC, Paulino GH, Dodds RH (2005) Interaction integral procedures for 3-D curved cracks including surface tractions. Eng Fract Mech 72(11):1635–1663

    Article  Google Scholar 

  38. Yagawa G, Yamada T (1996) Free mesh method: a new meshless finite element method. Comput Mech 18(5):383–386

    Article  MATH  Google Scholar 

  39. Yates J, Zanganeh M, Tomlinson R, Brown M, Garrido F (2008) Crack paths under mixed mode loading. Eng Fract Mech 75(3):319–330

    Article  Google Scholar 

  40. Zhu T, Zhang JD, Atluri S (1998) A local boundary integral equation (IBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC, Grant EP/G042586/1) and Defense Science and Technology Laboratory (DSTL), both of which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Barbieri.

Explicit expression for \(\min \) and \(\max \) functions

Explicit expression for \(\min \) and \(\max \) functions

It is useful to define explicit expressions for the \(min\) and \(max\) functions, where the \(min\) (\(max\)) function is the minimum (maximum) between two functions \(f:\mathbb{R }^k\rightarrow \mathbb{R }\) and \(g:\mathbb{R }^k\rightarrow \mathbb{R }\) with \(k=1,2,3\)

$$\begin{aligned} m\left( f(\mathbf{x}),g(\mathbf{x})\right)&= \min \left( f(\mathbf{x}),g(\mathbf{x})\right) = \left\{ \begin{array}{ll} f(\mathbf{x}) &{} \mathrm{if} \; f(\mathbf{x})-g(\mathbf{x})\le 0 \\ g(\mathbf{x}) &{} \mathrm{if} \; f(\mathbf{x})-g(\mathbf{x}) > 0 \end{array}\right. \nonumber \\ \end{aligned}$$
(51)
$$\begin{aligned} M\left( f(\mathbf{x}),g(\mathbf{x})\right)&= \max \left( f(\mathbf{x}),g(\mathbf{x})\right) = \left\{ \begin{array}{ll} g(\mathbf{x}) &{} \mathrm{if} \; f(\mathbf{x})-g(\mathbf{x})\le 0 \\ f(\mathbf{x}) &{} \mathrm{if} \; f(\mathbf{x})-g(\mathbf{x}) > 0 \end{array}\right. \nonumber \\ \end{aligned}$$
(52)

Equations (51) and (52) can be rewritten using the Heaviside function \(\mathcal H (\mathbf{x})\)

$$\begin{aligned} m(f,g) = g \, \mathcal H (f-g) + f \, \mathcal H (g-f) \end{aligned}$$
(53)
$$\begin{aligned} M(f,g) = f \, \mathcal H (f-g) + g \, \mathcal H (g-f) \end{aligned}$$
(54)

with the obvious commutative property

$$\begin{aligned} m(f,g) = m(g,f) \quad M(f,g) = M(g,f) \end{aligned}$$
(55)

Particular cases of Eqs. (53) and (54) are the positive and negative part of a function (Figs. 30, 31)

$$\begin{aligned} f_+ = M(f,0) \end{aligned}$$
(56)
$$\begin{aligned} f_- = m(f,0) \end{aligned}$$
(57)

and

$$\begin{aligned} f(\mathbf{x}) = f_+(\mathbf{x}) + f_-(\mathbf{x}) = M(f,0) + m(f,0) \end{aligned}$$
(58)

The functions in Eqs. (53) and (54) can be generalized to

$$\begin{aligned} m(a,b,f,g) = b \, \mathcal H (f-g) + a \, \mathcal H (g-f) \end{aligned}$$
(59)
$$\begin{aligned} M(a,b,f,g) = a \, \mathcal H (f-g) + b \, \mathcal H (g-f) \end{aligned}$$
(60)

where m assigns function a whenever \(f\ge g\) and b otherwise; M instead assigns function b whenever \(f \ge g\) and a otherwise. The following property holds true:

$$\begin{aligned} \min (f,g) = m(f,g,f,g)\quad \max (f,g) = M(f,g,f,g)\nonumber \\ \end{aligned}$$
(61)

Equation (61) allows the calculation of the derivatives of the \(\min \) and \(\max \) functions:

$$\begin{aligned} \dfrac{\partial \min (f,g)}{\partial x} = m\left( \dfrac{\partial f}{\partial x},\dfrac{\partial g}{\partial x},f,g\right) \end{aligned}$$
(62)
$$\begin{aligned} \dfrac{\partial \max (f,g)}{\partial x} = M\left( \dfrac{\partial f}{\partial x},\dfrac{\partial g}{\partial x},f,g\right) \end{aligned}$$
(63)
Fig. 30
figure 30

\(\max \) and \(\min \) functions with \(f(x)=\cos (x)\) (dash-dotted thin line) and \(g(x) = \sin (x)\) (dashed thick line))

Fig. 31
figure 31

Derivatives of \(\min \) and \(\max \) functions with \(f(x)=\cos (x)\) and \(g(x) = \sin (x)\); continuous line \(\min \) and \(\max \) functions, dashed line derivatives

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, E., Petrinic, N. Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53, 325–342 (2014). https://doi.org/10.1007/s00466-013-0910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0910-3

Keywords

Navigation