Skip to main content
Log in

What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a model for incompressible finite strain orthotropic hyperelasticity using logarithmic strains. The model does not have a prescribed shape. Instead, the energy function shape and the material data of the model are obtained solving the equilibrium equations of the different experiments. As a result the model almost exactly replicates the given experimental data for all six tests needed to completely define our nonlinear orthotropic material. We derive the constitutive tensor and demonstrate the efficiency of the finite element implementation for complex loading situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  2. Kojic M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, New York

    Google Scholar 

  3. Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola

    Google Scholar 

  4. Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. In: Onate E, Owen R (eds) Computational plasticity. Springer, Netherlands, pp 13–36

    Chapter  Google Scholar 

  5. Caminero MÁ, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comp Struct 89:826–843

    Article  Google Scholar 

  6. Kojic M, Bathe KJ (1987) Studies of finite element procedures stress solution of a closed elastic strain path with stretching and shearing using the updated lagrangian Jaumann formulation. Comp Struct 26(1/2):175–179

    Article  MATH  Google Scholar 

  7. Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326:565–584

    Article  MATH  Google Scholar 

  8. Mooney M (1940) A theory of large elastic deformation. J App Phys 11:582–592

    Article  MATH  Google Scholar 

  9. Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil Trans R Soc Lond A 241(835):379–397

    Article  MATH  MathSciNet  Google Scholar 

  10. Blatz PJ, Ko WL (1962) Application of finite elasticity theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251

    Article  Google Scholar 

  11. Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805

    Article  Google Scholar 

  12. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  Google Scholar 

  13. Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J Aust Math Soc B 24:424–434

    Article  MATH  MathSciNet  Google Scholar 

  14. Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Number Method Eng 50:1777–1799

    Article  MATH  Google Scholar 

  15. Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41:3833–3848

    Article  MATH  MathSciNet  Google Scholar 

  16. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  17. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a characterization structurally based framework for material characterization. Phil Trans R Soc A 367:3445–3475

    Article  MATH  MathSciNet  Google Scholar 

  18. Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MATH  MathSciNet  Google Scholar 

  19. Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension–compression test data. Commun Number Method Eng 25:53–63

    Article  MATH  MathSciNet  Google Scholar 

  20. Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain–energy function of the Valanis–Landel type. J Rheol 24:483–501

    Article  Google Scholar 

  21. Latorre M, Montáns FJ (2013) Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comp Struct 122:13–26

    Article  Google Scholar 

  22. Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solids Struct (in press)

  23. Valanis KC, Landel RF (1967) The strain–energy function of a hyperelastic material in terms of the extension ratios. J App Phys 38:2997–3002

    Article  Google Scholar 

  24. Montáns FJ, Benítez JM, Caminero MÁ (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43: 50–56

    Google Scholar 

  25. Miehe C, Lambrecht M (2001) Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun Numer Methods Eng 17:337–353

    Article  MATH  Google Scholar 

  26. Anand L (1979) On H. Hencky’s approximate strain–energy function for moderate deformations. J App Mech 46:78–82

    Article  MATH  Google Scholar 

  27. Anand L (1986) Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J Mech Phys Solid 34:293–304

    Article  Google Scholar 

  28. Morrow DA, Donahue TLH, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3:124–129

    Article  Google Scholar 

  29. Holzapfel GA, Sommer G, Gasser TC, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:2048–2058

    Article  Google Scholar 

  30. Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555

    Article  Google Scholar 

  31. Dokos S, Smaill BH, Young AA, LeGrice IL (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:2650–2659

    Google Scholar 

  32. Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36:313–321

    Google Scholar 

  33. Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp Struct 26:357–409

    Article  MATH  Google Scholar 

  34. Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767–2791

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Partial financial support for this research is given by the Dirección General de Investigación of the Ministerio de Economía y Competitividad of Spain under grant DPI2011-26635 of the Plan Nacional de Investigación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Latorre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, M., Montáns, F.J. What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput Mech 53, 1279–1298 (2014). https://doi.org/10.1007/s00466-013-0971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0971-3

Keywords

Navigation