Skip to main content
Log in

On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In isogeometric analysis (IGA), the functions used to describe the CAD geometry (such as NURBS) are also employed, in an isoparametric fashion, for the approximation of the unknown fields, leading to an exact geometry representation. Since the introduction of IGA, it has been shown that the high regularity properties of the employed functions lead in many cases to superior accuracy per degree of freedom with respect to standard FEM. However, as in Lagrangian elements, NURBS-based formulations can be negatively affected by the appearance of non-physical phenomena that “lock” the solution when constrained problems are considered. In order to alleviate such locking behaviors, the Assumed Natural Strain (ANS) method proposed for Lagrangian formulations is extended to NURBS-based elements in the present work, within the context of solid-shell formulations. The performance of the proposed methodology is assessed by means of a set of numerical examples. The results allow to conclude that the employment of the ANS method to quadratic NURBS-based elements successfully alleviates non-physical phenomena such as shear and membrane locking, significantly improving the element performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arnold D, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. Calcolo 21:337–344

    Article  MATH  MathSciNet  Google Scholar 

  2. Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp Struct 26:357–409

    Article  MATH  Google Scholar 

  3. Bathe KJ (1996) Finite element procedures. Prentice Hall

  4. Zienkiewicz OC, Taylor RL (2000) The finite element method: volume 1, the basis. McGraw-Hill, New York

  5. Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comp Methods Appl Mech Eng 88(3):311–340

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Wong BL, Chiang HY (1992) Advances in one-point quadrature shell elements. Comp Methods Appl Mech Eng 96(1):93–107

    Article  MATH  Google Scholar 

  7. Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comp Methods Appl Mech Eng 113(3–4):321–350

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu WK, Hu Y-K (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37(19):3263–3289

    Google Scholar 

  9. Wriggers P, Eberlein R, Reese S (1996) A comparison of three-dimensional continuum and shell elements for finite plasticity. Int J Solids Struct 33(20–22):3309–3326

    Article  MATH  Google Scholar 

  10. Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comp Methods Appl Mech Eng 154(1–2):69–132

    Google Scholar 

  11. Reese S, Wriggers P, Reddy BD (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comp Struct 75(3):291–304

    Article  MathSciNet  Google Scholar 

  12. Reese S (2002) On the equivalence of mixed element formulations and the concept of reduced integration in large deformation problems. Int J Nonlinear Sci Numer Simul 3(1):1–33

    Article  MATH  MathSciNet  Google Scholar 

  13. Hughes TJR (1977) Equivalence of finite elements for nearly incompressible elasticity. J Appl Mech 44:1671–1685

    Article  Google Scholar 

  14. de Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20—-22):3277–3296

  15. de Souza Neto EA, Andrade Pires FM, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int J Numer Methods Eng 62(3):353–383

  16. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  17. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7):1413–1449

    Article  MATH  MathSciNet  Google Scholar 

  18. Korelc J, Wriggers P (1996) An efficient 3D enhanced strain element with Taylor expansion of the shape functions. Comput Mech 19:30–40

    Article  MATH  Google Scholar 

  19. Roehl D, Ramm E (1996) Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int J Solids Struct 33(20–22):3215–3237

    Article  MATH  MathSciNet  Google Scholar 

  20. Armero F, Dvorkin EN (2000) On finite elements for nonlinear solid mechanics. Comput Struct 75(3):235

    Article  Google Scholar 

  21. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: Part I: geometrically linear problems. Comput Struct 75(3):237–250

    Article  Google Scholar 

  22. Piltner R (2000) An implementation of mixed enhanced finite elements with strains assumed in Cartesian and natural element coordinates using sparse B-matrices. Eng Comput 17:933–949

    Article  MATH  Google Scholar 

  23. Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, Csar de S JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20(7):896–925

  24. Fontes Valente RA, Natal Jorge RM, Cardoso RPR, Cesar de Sa JMA, Gracio JJA (2003) On the use of an enhanced transverse shear strain shell element for problems involving large rotations. Comput Mech 30:286–296

    Google Scholar 

  25. Fontes Valente RA, Alves De Sousa RJ, Natal Jorge RM (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38–52

  26. Alves de Sousa RJ, Cardoso RPR, FontesValente RA, Yoon J-W, Grcio JJ, Natal Jorge RM (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Methods Eng 62(7):952–977

    Google Scholar 

  27. Alves de Sousa RJ, Cardoso RPR, Fontes Valente RA, Yoon JW, Grcio JJ, NatalJorge RM (2006) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness. Part II: nonlinear applications. Int J Numer Methods Eng 67(2):160–188

    Google Scholar 

  28. Korelc J, Ursa A, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641–659

    Article  MATH  Google Scholar 

  29. Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48(3):587– 596

    Google Scholar 

  30. Dvorkin Eduardo N, Bathe Klaus-Jrgen (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  31. Hauptmann R, Schweizerhof K (1998) A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42(1):49–69

    Article  MATH  Google Scholar 

  32. Sze KY, Yao LQ (2000) A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I: solid-shell element formulation. Int J Numer Methods Eng 48(4):545–564

    Article  MATH  Google Scholar 

  33. Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alvesde Sousa RJ, FontesValente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75(2):156–187

    Article  MATH  MathSciNet  Google Scholar 

  34. Schwarze M, Reese S (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concepts: geometrically linear problems. Int J Numer Methods Eng 80(10):1322–1355

    Google Scholar 

  35. Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concepts: large deformation problems. Int J Numer Methods Eng 85(3):289–329

    Google Scholar 

  36. Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites I—statics. Comput Methods Appl Mech Eng 192(9–10):975–1016

    Article  MATH  Google Scholar 

  37. Reese S (2007) A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int J Numer Methods Eng 69(8):1671–1716

    Google Scholar 

  38. Harnau M, Schweizerhof K (2006) Artificial kinematics and simple stabilization of solid-shell elements occurring in highly constrained situations and applications in composite sheet forming simulation. Finite Elem Anal Des 42(12):1097–1111

    Article  Google Scholar 

  39. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  40. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  Google Scholar 

  41. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  42. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183

    Article  MATH  MathSciNet  Google Scholar 

  43. Echter R, Bischoff M (2010) Numerical efficiency, locking and unlocking of NURBS finite elements. Comput Methods Appl Mech Eng 199(5–8):374–382

    Google Scholar 

  44. Elguedj T, Bazilevs Y, Calo VM, Hughes TRJ (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197:2732–2762

    Article  MATH  Google Scholar 

  45. Taylor RL (2011) Isogeometric analysis of nearly incompressible solids. Int J Numer Methods Eng 87(1–5):273–288

    Article  MATH  Google Scholar 

  46. Rui PR, Cardoso, Csar de S JMA (2012) The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids. Int J Numer Methods Eng 92(1):56–78

    Article  Google Scholar 

  47. Beir da Veiga L, Lovadina C, Reali A (2012) Avoiding shear locking for the timoshenko beam problem via isogeometric collocation methods. Comput Methods Appl Mech Eng 241—-244(0):38–51

    Article  Google Scholar 

  48. Auricchio F, Beir da Veiga L, Kiendl J, Lovadina C, Reali A (2013) Locking-free isogeometric collocation methods for spatial timoshenko rods. Comput Methods Appl Mech Eng 263:113–126

    Article  Google Scholar 

  49. Bouclier Robin, Elguedj Thomas, Combescure Alain (2012) Locking free isogeometric formulations of curved thick beams. Comput Methods Appl Mech Eng 245–246:144–162

    Article  MathSciNet  Google Scholar 

  50. Bouclier R, Elguedj T, Combescure A (2013) On the development of NURBS-based isogeometric solid shell elements: 2D problems and preliminary extension to 3D. Comput Mech p 1–28

  51. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    Article  MathSciNet  Google Scholar 

  52. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, Le T-H, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite reissner-mindlin plates using NURBS-based isogeometric approach. Int J Numer Methods Eng 91(6):571–603

    Article  MATH  MathSciNet  Google Scholar 

  53. Saman H Remmers JJC, Verhoosel CV, de Borst R (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Methods Eng 95(3):238–256

    Google Scholar 

  54. Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  55. Benson DJ, Hartmann S, Bazilevs Y, Hsu MC, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    Google Scholar 

  56. Piegl L, Tiller W (1997) The NURBS book. Springer, New York

    Book  Google Scholar 

  57. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, London (1993)

  58. Bucalem ML, Bathe K-J (1993) Higher-order MITC general shell elements. Int J Numer Methods Eng 36(21):3729–3754

    Google Scholar 

  59. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on bzier extraction of nurbs. Int J Numer Methods Eng 87(1—-5):15–47

    Article  MATH  MathSciNet  Google Scholar 

  60. Kiendl J, Bletzinger K-U, Linhard J, Wuchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    Article  MATH  MathSciNet  Google Scholar 

  61. Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JS-J (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Methods Appl Mech Eng 51:221–258

    Article  MATH  MathSciNet  Google Scholar 

  62. Scordelis AC, Lo KS (1969) Computer analysis of cylindrical shells. J Am Concr Inst 61:539–561

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support given by the Ministrio da Educao e Cincia, Portugal, under the Grants SFRH/BD/70815/2010 and PTDC/EMS-TEC/0899/2012, as well as by the European Research Council through the Project ISOBIO No. 259229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Caseiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caseiro, J.F., Valente, R.A.F., Reali, A. et al. On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements. Comput Mech 53, 1341–1353 (2014). https://doi.org/10.1007/s00466-014-0978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0978-4

Keywords

Navigation