Skip to main content
Log in

NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Cohesive zone (CZ) models have long been used by the scientific community to analyze the progressive damage of materials and interfaces. In these models, non-linear relationships between tractions and relative displacements are assumed, which dictate both the work of separation per unit fracture surface and the peak stress that has to be reached for the crack formation. This contribution deals with isogeometric CZ modeling of interface debonding. The interface is discretized with generalized contact elements which account for both contact and cohesive debonding within a unified framework. The formulation is suitable for non-matching discretizations of the interacting surfaces in presence of large deformations and large relative displacements. The isogeometric discretizations are based on non uniform rational B-splines as well as analysis-suitable T-splines enabling local refinement. Conventional Lagrange polynomial discretizations are also used for comparison purposes. Some numerical examples demonstrate that the proposed formulation based on isogeometric analysis is a computationally accurate and efficient technology to solve challenging interface debonding problems in 2D and 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  MATH  Google Scholar 

  2. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242

    Article  Google Scholar 

  3. Allix O, Ladevèze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31(1):61–74

    Article  Google Scholar 

  4. Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36(15):2189–2216

    Article  MATH  Google Scholar 

  5. ASTM Standard D3433–99 (2012) Standard test method for fracture strength in cleavage of adhesives in bonded metal joints. doi:10.1520/D3433-99R12. www.astm.org

  6. Autodesk, Inc. (2011) http://www.tsplines.com/rhino/

  7. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140:329–359

    Article  MATH  Google Scholar 

  10. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Methods Eng 87:15–47

    Article  MathSciNet  MATH  Google Scholar 

  11. Corigliano A (1993) Formulation, identication and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811

    Article  MATH  Google Scholar 

  12. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward Integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  13. Crisfield MA, Alfano G (2002) Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model. Int J Numer Methods Eng 54:1369–1390

    Article  MATH  Google Scholar 

  14. De Lorenzis L, Zavarise G (2009) Cohesive zone modeling of interfacial stresses in plated beams. Int J Solids Struct 46(24):4181–4191

    Google Scholar 

  15. De Lorenzis L, Zavarise G (2009) Interfacial stress analysis and prediction of debonding for a thin plate bonded to a curved substrate. Int J Non-Linear Mech 44(4):358–370

    Google Scholar 

  16. De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MATH  Google Scholar 

  17. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y (2008) Polynomial splines over hierarchical T-meshes. Graph Models 70:76–86

    Article  Google Scholar 

  19. Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414

    Article  MATH  Google Scholar 

  20. Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

    Article  MathSciNet  MATH  Google Scholar 

  21. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

    Article  MATH  Google Scholar 

  22. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  23. Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244

    Article  MATH  Google Scholar 

  24. Guimatsia I, Ankersen JK, Davies GAO, Iannucci L (2009) Decohesion finite element with enriched basis functions for delamination. Compos Sci Technol 69(15–16):2616–2624

    Article  Google Scholar 

  25. Hermes FH (2010) Process zone and cohesive element size in numerical simulations of delamination in bi-layers. MT 10.21, Eindhoven, September 24th, 2010

  26. Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-hall, Englewood Cliffs

  27. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  28. Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    Article  MATH  Google Scholar 

  29. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  30. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–740

    Article  MATH  Google Scholar 

  31. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

    Article  MathSciNet  Google Scholar 

  32. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531

    Article  MATH  Google Scholar 

  33. Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38(3):289–324

    Article  Google Scholar 

  34. Nguyen-Thanh N, Nguyen-Xuan H, Bordas SP, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21–22):1892–1908

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen VP, Nguyen-Xuan H (2013) High-order B-splines based finite elements for delamination analysis of laminated composites. Compos Struct 102:261–275

    Article  Google Scholar 

  36. Papadopoulos P, Jones RE, Solberg JM (1995) A novel finite element formulation for frictionless contact problems. Int J Numer Methods Eng 38:2603–2617

    Article  MathSciNet  MATH  Google Scholar 

  37. Point N, Sacco E (1996) A delamination model for laminated composites. Int J Solids Struct 33(4):483–509

    Article  MATH  Google Scholar 

  38. Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274

    Article  Google Scholar 

  39. Sauer R (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87:593–616

    Article  MATH  Google Scholar 

  40. Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395

    Article  Google Scholar 

  41. Samini M, van Dommelen JAW, Geers MGD (2009) An enriched cohesive zone model for delamination in brittle interfaces. Numer Methods Eng 80(5):609–630

    Article  Google Scholar 

  42. Samini M, van Dommelen JAW, Geers MGD (2011) A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models. Eng Fract Mech 78(10):2202–2219

    Article  Google Scholar 

  43. Schellekens JCJ, de Borst R (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30:1239–1253

    Article  MATH  Google Scholar 

  44. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MathSciNet  MATH  Google Scholar 

  45. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Numer Methods Eng 88(2):126–156

    Article  MathSciNet  MATH  Google Scholar 

  46. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222

    Article  MathSciNet  Google Scholar 

  47. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22(3):477–484

    Google Scholar 

  48. Sederberg TW, Zheng J, Song X (2003) Knot intervals and multi-degree splines. Comput Aided Geom Des 20:455–468

    Google Scholar 

  49. Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283

    Article  Google Scholar 

  50. Sederberg TW, Finnigan GT, Lin X, Ipson H (2008) Watertight trimmed NURBS, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH, 27(3), Article No. 79, 2008

  51. Taylor RL (2013) FEAP—finite element analysis program. University of California, Berkeley. http://www.ce.berkeley.edu/projects/feap/

  52. Temizer İ, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  53. Temizer İ, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  54. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397

    Article  MATH  Google Scholar 

  55. Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41(6):1119–1135

    Article  MATH  Google Scholar 

  56. Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Meth Eng 87(1–5):336–360

    Article  MATH  Google Scholar 

  57. Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 49–52:3554–3567

    Article  Google Scholar 

  58. Wang W, Zhang Y, Scott MA, Hughes TJR (2011) Converting an unstructured quadrilateral mesh to a standard T-spline surface. Comput Mech 48(4):477–498

    Article  MathSciNet  MATH  Google Scholar 

  59. Wei Y, Hutchinson JW (1998) Interface strength, work of adhesion and plasticity in the peel test. Int J Fract 93:315–333

    Article  Google Scholar 

  60. Wriggers P (2006) Computational contact mechanics, 2nd edn. Spinger, Berlin

    Book  MATH  Google Scholar 

  61. Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249–252:185–197

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors at the Università del Salento and at the Technische Universität Braunschweig have received funding for this research from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC Starting Researcher Grant “INTERFACES”, Grant Agreement No. 279439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dimitri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitri, R., De Lorenzis, L., Wriggers, P. et al. NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54, 369–388 (2014). https://doi.org/10.1007/s00466-014-0991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0991-7

Keywords

Navigation