Skip to main content
Log in

Modeling of dynamic crack branching by enhanced extended finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The conventional extended finite element method (XFEM) is enhanced in this paper to simulate dynamic crack branching, which is a top challenge issue in fracture mechanics and finite element method. XFEM uses the enriched shape functions with special characteristics to represent the discontinuity in computation field. In order to describe branched cracks, it is necessary to set up the additional enrichment. Here we have developed two kinds of branched elements, namely the “element crossed by two separated cracks” and “element embedded by a junction”. Another series of enriched degrees of freedom are introduced to seize the additional discontinuity in the elements. A shifted enrichment scheme is used to avoid the treatment of blending element. Correspondingly a new mass lumping method is developed for the branched elements based on the kinetic conservation. The derivation of the mass matrix of a four-node quadrilateral element which contains two strong discontinuities is specially presented. Then by choosing crack speed as the branching criterion, the branching process of a single mode I crack is simulated. The results including the branching angle and propagation routes are compared with that obtained by the conventionally used element deletion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture-III. On steady-state crack propagation and crack branching. Int J Fract 26:141–154

    Article  Google Scholar 

  2. Sharon E, Gross S, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096–5099. doi:10.1103/PhysRevLett.74.5096

    Google Scholar 

  3. Boudet JF, Ciliberto S, Steinberg V (1996) Dynamics of crack propagation in brittle materials. J Phys II France 6:1493–1516. doi:10.1051/jp2:1996144

    Article  Google Scholar 

  4. Fliss S, Bhat HS, Dmowska R, Rice JR (2005) Fault branching and rupture directivity. J Geophys Res 110:B06312. doi:10.1029/2004jb003368

    Google Scholar 

  5. Bhat HS, Olives M, Dmowska R, Rice JR (2007) Role of fault branches in earthquake rupture dynamics. J Geophys Res 112:B11309. doi:10.1029/2007jb005027

    Article  Google Scholar 

  6. Fineberg J, Sharon E (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397:333–335. doi:10.1038/16891

    Article  Google Scholar 

  7. Yoffe EH (1951) The moving Griffith crack. Philos Mag 42:739–750. doi:10.1080/14786445108561302

    MathSciNet  MATH  Google Scholar 

  8. Eshelby JD (1999) Energy relations and the energy-momentum tensor in continuum mechanics. Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. 82–119. doi:10.1007/978-3-642-59938-5_5

  9. Adda-bedia M (2005) Brittle fracture dynamics with arbitrary paths III. The branching instability under general loading. J Mech Phys Solids 53:227–248. doi:10.1016/j.jmps.2004.06.001

    Article  MATH  Google Scholar 

  10. Martín T, Español P, Rubio MA (2005) Mechanisms for dynamic crack branching in brittle elastic solids: strain field kinematics and reflected surface waves. Phys Rev E 71:036202. doi:10.1103/PhysRevE.71.036202

    Article  Google Scholar 

  11. Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int J Fract 143:245–271. doi:10.1007/s10704-007-9061-x

    Article  MATH  Google Scholar 

  12. Zhou SJ, Lomdahl PS, Thomson R, Holian BL (1996) Dynamic crack processes via molecular dynamics. Phys Rev Lett 76:2318–2321. doi:10.1103/PhysRevLett.76.2318

    Google Scholar 

  13. Bolander JE Jr, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61:569–591

    Article  Google Scholar 

  14. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  15. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162:229–244. doi:10.1007/s10704-010-9442-4

    Article  MATH  Google Scholar 

  16. Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng. Fract. Mech. 76:730–741. doi:10.1016/j.engfracmech.2008.06.002

    Article  Google Scholar 

  17. Henry H (2008) Study of the branching instability using a phase field model of inplane crack propagation. Europhys Lett 83:16004. doi:10.1209/0295-5075/83/16004

    Article  Google Scholar 

  18. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng. 217–220:77–95. doi:10.1016/j.cma.2012.01.008

    Article  MathSciNet  Google Scholar 

  19. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MathSciNet  MATH  Google Scholar 

  20. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  21. Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893. doi:10.1002/nme.1652

    Google Scholar 

  22. Duan QL, Song J-H, Menouillard T, Belytschko T (2009) Element-local level set method for three-dimensional dynamic crack growth. Int J Numer Methods Eng 80:1520–1543. doi:10.1002/nme.2665

    Article  MathSciNet  MATH  Google Scholar 

  23. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  MATH  Google Scholar 

  24. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58:1873–1905. doi:10.1002/nme.941

    Article  MATH  Google Scholar 

  25. Song J-H, Wang H, Belytschko T (2007) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250. doi:10.1007/s00466-007-0210-x

    Article  Google Scholar 

  26. Song J-H, Belytschko T (2009) Cracking node method for dynamic fracture with finite elements. Int J Numer Methods Eng 77:360–385. doi:10.1002/nme.2415

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhuang Z, Cheng BB (2011) Development of X-FEM methodology and study on mixed-mode crack propagation. Acta Mech Sin 27:406–415. doi:10.1007/s10409-011-0436-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuang Z, Cheng BB (2011) Equilibrium state of mode-I sub-interfacial crack growth in bi-materials. Int J Fract 170:27–36. doi:10.1007/s10704-011-9599-5

    Article  MATH  Google Scholar 

  29. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960

    Article  MATH  Google Scholar 

  30. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304. doi:10.1002/nme.2914

    MathSciNet  MATH  Google Scholar 

  31. Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Mater Sci Eng 12:901–915. doi:10.1088/0965-0393/12/5/009

    Article  Google Scholar 

  32. Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended finite element method (X-FEM). Int J Numer Methods Eng 68:911–939. doi:10.1002/nme.1718

    Article  MATH  Google Scholar 

  33. Chinese Aeronautical Establishment (1981) Stress intensity factor handbook (in Chinese). Science press, Beijing

  34. Freund LB (1990) Dynamic fracture mechanics. Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54:7128–7139. doi:10.1103/PhysRevB.54.7128

    Article  Google Scholar 

  36. Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27:187–201

    Article  Google Scholar 

  37. Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83–102

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11372157 and The Special Research Grant for Doctor Discipline by Ministry of Education of China under Grant No. 20120002110075

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanli Liu or Zhuo Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Liu, Z., Liu, X. et al. Modeling of dynamic crack branching by enhanced extended finite element method. Comput Mech 54, 489–502 (2014). https://doi.org/10.1007/s00466-014-1001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1001-9

Keywords

Navigation