Skip to main content
Log in

Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a direct method for computing modal coupling coefficients—due to geometrically nonlinear effects—for thin shells vibrating at large amplitude and discretized by a finite element (FE) procedure. These coupling coefficients arise when considering a discrete expansion of the unknown displacement onto the eigenmodes of the linear operator. The evolution problem is thus projected onto the eigenmodes basis and expressed as an assembly of oscillators with quadratic and cubic nonlinearities. The nonlinear coupling coefficients are directly derived from the FE formulation, with specificities pertaining to the shell elements considered, namely, here elements of the “Mixed Interpolation of Tensorial Components” family. Therefore, the computation of coupling coefficients, combined with an adequate selection of the significant eigenmodes, allows the derivation of effective reduced-order models for computing—with a continuation procedure —the stable and unstable vibratory states of any vibrating shell, up to large amplitudes. The procedure is illustrated on a hyperbolic paraboloid panel. Bifurcation diagrams in free and forced vibrations are obtained. Comparisons with direct time simulations of the full FE model are given. Finally, the computed coefficients are used for a maximal reduction based on asymptotic nonlinear normal modes, and we find that the most important part of the dynamics can be predicted with a single oscillator equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nayfeh AH (2000) Nonlinear interactions: analytical, computational and experimental methods., Wiley series in nonlinear scienceWiley, New York

    Google Scholar 

  2. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  3. Seydel R (2010) Practical bifurcation and stability analysis, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  4. Krauskopf B, Osinga H, Galán-Vioque J (2007) Numerical continuation methods for dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  6. Lewandowski R (1997) Computational formulation for periodic vibration of geometrically nonlinear structures, part II: numerical strategy and examples. Int J Solids Struct 34:1949–1964

    Article  Google Scholar 

  7. Arafat HN, Nayfeh AH (2003) Non-linear responses of suspended cables to primary resonance excitation. J Sound Vib 266:325–354

    Article  Google Scholar 

  8. Amabili M, Pellicano F, Païdoussis MP (1999) Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow. J Sound Vib 228(5):1103–1124

    Article  Google Scholar 

  9. Touzé C, Amabili M, Thomas O (2008) Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput Methods Appl Mech Eng 197(21–24):2030–2045

    Article  MATH  Google Scholar 

  10. Amabili M (2003) A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J Sound Vib 264:1091–1125

    Article  Google Scholar 

  11. Kurpa L, Pilgun G, Amabili M (2007) Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments. J Sound Vib 306(3–5):580–600

    Article  Google Scholar 

  12. Lazarus A, Thomas O, Deü J-F (2012) Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem Anal Des 49:35–51

    Article  MathSciNet  Google Scholar 

  13. Boumediene F, Miloudi A, Cadou JM, Duigou L, Boutyour EH (2009) Nonlinear forced vibration of damped plates by an asymptotic numerical method. Comput Struct 87(23–24):1508–1515

    Article  Google Scholar 

  14. Boumediene F, Duigou L, Boutyour EH, Miloudi A, Cadou JM (2011) Nonlinear forced vibration of damped plates coupling asymptotic numerical method and reduction models. Comput Mech 47(4):359–377

    Article  MATH  Google Scholar 

  15. Muravyov AA, Rizzi SA (2003) Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput Struct 81:1513–1523

    Article  Google Scholar 

  16. Mignolet M, Soize C (2008) Stochastic reduced-order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197:3951–3963

    Article  MathSciNet  MATH  Google Scholar 

  17. Mignolet M, Przekop A, Rizzi SA, Spottswood SM (2013) A review of indirect/non-intrusive reduced-order modeling of nonlinear geometric structures. J Sound Vib 332:2437–2460

    Article  Google Scholar 

  18. Chapelle D, Bathe KJ (2011) The finite element analysis of shells: fundamentals, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  19. Meirovitch L (1980) Computational methods in structural dynamics. Sijthoff and Noordhoff, The Netherlands

    MATH  Google Scholar 

  20. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  21. Krysl P, Lall S, Marsden JE (2001) Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng 51:479–504

    Article  MathSciNet  MATH  Google Scholar 

  22. Amabili M, Touzé C (2007) Reduced-order models for non-linear vibrations of fluid-filled circular cylindrical shells: comparison of pod and asymptotic non-linear normal modes methods. J Fluids Struct 23(6):885–903

    Article  Google Scholar 

  23. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  24. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  25. Sanchez-Palencia E (1992) Asymptotic and spectral properties of a class of singular-stiff problems. J Math Pure Appl 71:379–406

    MathSciNet  MATH  Google Scholar 

  26. Artioli E, Beirão da Veiga L, Hakula H, Lovadina C (2008) Free vibrations for some Koiter shells of revolution. Appl Math Lett 21:1245–1248

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosenberg RM (1962) The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech 29:7–14

    Article  MATH  Google Scholar 

  28. Rosenberg RM (1966) On non-linear vibrations of systems with many degrees of freedom. Adv Appl Mech 9:155–242

    Article  Google Scholar 

  29. Vakakis AF, Manevitch LI, Mikhlin YV, Philipchuck VN, Zevin AA (1996) Normal modes and localization in non-linear systems. Wiley, New York

    Book  Google Scholar 

  30. Vakakis AF (1997) Non-linear normal modes (nnms) and their application in vibration theory: an overview. Mech Syst Signal Process 11(1):3–22

    Article  MathSciNet  Google Scholar 

  31. Vakakis AF, Gendelman OV, Bergman LA, McFarland DM, Kerschen G, Lee YS (2008) Nonlinear targeted energy transfer in mechanical and structural systems I. Springer, New York

    Google Scholar 

  32. Kerschen G, Peeters M, Golinval JC, Vakakis AF (2009) Non-linear normal modes, part I: a useful framework for the structural dynamicist. Mech Syst Signal Process 23(1):170–194

    Article  Google Scholar 

  33. Doedel EJ, Paffenroth R, Champneys AR, Fairgrieve TF, Kuznetsov YA, Oldeman BE, Sandstede B, Wang X (2002) Auto 2000: continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University, 2002. http://cmvl.cs.concordia.ca/auto/

  34. Touzé C, Thomas O, Amabili M (2011) Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int J Non-linear Mech 46(1):234–246

    Google Scholar 

  35. Touzé C, Bilbao S, Cadot O (2012) Transition scenario to turbulence in thin vibrating plates. J Sound Vib 331(2):412–433

    Article  Google Scholar 

  36. Ducceschi M, Touzé C, Bilbao S, Webb CJ (2014) Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations. Acta Mech 225:213–232

    Article  MathSciNet  MATH  Google Scholar 

  37. Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval JC (2009) Non-linear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process 23(1):195–216

    Article  Google Scholar 

  38. Peeters M, Kerschen G, Golinval JC, Stephan C, Lubrina P (2011) Nonlinear normal modes of a full-scale aircraft. In: 29th International Modal Analysis Conference, Jacksonville (USA), 2011

  39. Blanc F, Touzé C, Mercier J-F, Ege K, Bonnet-Ben-Dhia A-S (2013) On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech Syst Signal Process 36(2):520–539

    Article  Google Scholar 

  40. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin

    Google Scholar 

  41. Nayfeh AH, Lacarbonara W (1997) On the discretization of distributed-parameter systems with quadratic and cubic non-linearities. Nonlinear Dyn 13:203–220

    Article  MathSciNet  MATH  Google Scholar 

  42. Rega G, Lacarbonara W, Nayfeh AH (2000) Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature. Solid Mech Appl 77:235–246

    MathSciNet  Google Scholar 

  43. Amabili M, Pellicano F, Païdoussis MP (2000) Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part III: truncation effect without flow and experiments. J Sound Vib 237(4):617–640

    Article  Google Scholar 

  44. Touzé C, Thomas O, Chaigne A (2004) Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J Sound Vib 273(1–2):77–101

    Article  Google Scholar 

  45. Nayfeh AH, Nayfeh JF, Mook DT (1992) On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn 3:145–162

    Article  Google Scholar 

  46. Pakdemirli M, Nayfeh SA, Nayfeh AH (1995) Analysis of one-to-one autoparametric resonances in cables: discretization vs. direct treatment. Nonlinear Dyn 8:65–83

    Article  MathSciNet  Google Scholar 

  47. Amabili M (2005) Non-linear vibrations of doubly-curved shallow shells. Int J Non-linear Mech 40(5):683–710

    Article  MATH  Google Scholar 

  48. Touzé C, Thomas O (2006) Non-linear behaviour of free-edge shallow spherical shells: effect of the geometry. Int J Non-linear Mech 41(5):678–692

    Article  MATH  Google Scholar 

  49. Shaw SW, Pierre C (1991) Non-linear normal modes and invariant manifolds. J Sound Vib 150(1):170–173

    Article  MathSciNet  Google Scholar 

  50. Touzé C, Amabili M (2006) Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. J Sound Vib 298(4–5):958–981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Touzé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touzé, C., Vidrascu, M. & Chapelle, D. Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models. Comput Mech 54, 567–580 (2014). https://doi.org/10.1007/s00466-014-1006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1006-4

Keywords

Navigation