Skip to main content
Log in

A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Based on the element-free Galerkin (EFG) method, an analysis-independent density variable approach is proposed for topology optimization of geometrically nonlinear structures. This method eliminates the mesh distortion problem often encountered in the finite element analysis of large deformations. The topology optimization problem is formulated on the basis of point-wise description of the material density field. This density field is constructed by a physical meaning-preserving interpolation with the density values of the design variable points, which can be freely positioned independently of the field points used in the displacement analysis. An energy criterion of convergence is used to resolve the well-known convergence difficulty, which would be usually encountered in low density regions, where displacements oscillate severely during the optimization process. Numerical examples are given to demonstrate the effectiveness of the developed approach. It is shown that relatively clear optimal solutions can be achieved, without exhibiting numerical instabilities like the so-called “layering” or “islanding” phenomena even in large deformation cases. This study not only confirms the potential of the EFG method in topology optimization involving large deformations, but also provides a novel topology optimization framework based on element-free discretization of displacement and density fields, which can also easily incorporate other meshless analysis methods for specific purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Compu Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  2. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  3. Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  4. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Structl Optim 4(3–4):250–252

    Article  Google Scholar 

  5. Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  6. Bendsøe MP (1995) Optimization of structural topology shape and material. Springer, New York

    Book  Google Scholar 

  7. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Physics 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Compu Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  9. Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196

    Article  MATH  Google Scholar 

  10. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compu Struct 49(5):885–896

    Article  Google Scholar 

  11. Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1–2):117–134

    Article  MATH  MathSciNet  Google Scholar 

  12. Bruns TE, Tortorelli DA (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. St. Louis, MI, pp 1874–1882

  13. Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104

    Article  Google Scholar 

  14. Gea HC, Luo JH (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985

    Article  Google Scholar 

  15. Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705

    Article  MATH  Google Scholar 

  16. Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  17. Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627

    Article  Google Scholar 

  18. Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237

    Article  MATH  Google Scholar 

  19. Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892

    Article  MATH  MathSciNet  Google Scholar 

  20. Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238

    Article  MATH  MathSciNet  Google Scholar 

  21. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  22. Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–24):2539–2553

    Article  MATH  Google Scholar 

  23. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  24. Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009

    Article  MATH  MathSciNet  Google Scholar 

  25. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  27. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  28. Chen JS, Pan CH, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu GR, Gu YT (2005) An Introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  30. Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19(3):211–227

    Article  MATH  MathSciNet  Google Scholar 

  31. Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using meshfree method. Compu Methods Appl Mech Eng 195(44–47):5909–5925

    Article  MATH  MathSciNet  Google Scholar 

  32. Du Y, Luo Z, Tian Q, Chen L (2009) Topology optimization for thermo-mechanical compliant actuators using mesh-free methods. Eng Optim 41(8):753–772

    Article  MathSciNet  Google Scholar 

  33. Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidiscip Optim 37(3):255–264

    Google Scholar 

  34. Zhou JX, Zou W (2008) Meshless approximation combined with implicit topology description for optimization of continua. Struct Multidiscip Optimization 36(4):347–353

    Article  MATH  Google Scholar 

  35. Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443–464

    Article  MathSciNet  Google Scholar 

  36. Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 200(49–52):3515–3525

    Article  MATH  MathSciNet  Google Scholar 

  37. Kang Z, Wang Y (2012) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329–342

    Article  MATH  MathSciNet  Google Scholar 

  38. Haug EJ, Choi KK (1986) Design sensitivity analysis of structural systems. Academic Press, New York

    MATH  Google Scholar 

  39. Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization I-linear systems. Springer, New York

    Google Scholar 

  40. Kim NH, Choi KK, Chen JS, Park YH (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25(2–3):157–168

    Article  MATH  Google Scholar 

  41. Kim NH, Choi KK, Chen JS (2001) Die shape design optimization of sheet metal stamping process using meshfree method. Int J Numer Methods Eng 51(12):1385–1405

    Article  MATH  Google Scholar 

  42. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River

    Google Scholar 

  43. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  44. Bathe K-J, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386

    Article  MATH  Google Scholar 

  45. Crisfield A (1997) Non-linear finite element analysis of solids and structures, vol 1–2. Wiley, Chichester

    Google Scholar 

  46. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

    Article  MATH  MathSciNet  Google Scholar 

  47. Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135

    Article  Google Scholar 

  48. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  49. Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12

    Article  Google Scholar 

  50. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  51. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  52. Yoon GH, Kim YY, Bendsoe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidiscip Optim 27(3):139–150

    Article  Google Scholar 

  53. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154

    Article  MATH  MathSciNet  Google Scholar 

  54. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321–1336

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The support by Major Project of Chinese National Programs for Fundamental Research and Development (Grant 2010CB832703) and the Natural Science Foundation of China (Grant 91130025, 11072047) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Kang, Z. & Wang, Y. A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech 54, 629–644 (2014). https://doi.org/10.1007/s00466-014-1011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1011-7

Keywords

Navigation