Skip to main content
Log in

Finite and spectral cell method for wave propagation in heterogeneous materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the current paper we present a fast, reliable technique for simulating wave propagation in complex structures made of heterogeneous materials. The proposed approach, the spectral cell method, is a combination of the finite cell method and the spectral element method that significantly lowers preprocessing and computational expenditure. The spectral cell method takes advantage of explicit time-integration schemes coupled with a diagonal mass matrix to reduce the time spent on solving the equation system. By employing a fictitious domain approach, this method also helps to eliminate some of the difficulties associated with mesh generation. Besides introducing a proper, specific mass lumping technique, we also study the performance of the low-order and high-order versions of this approach based on several numerical examples. Our results show that the high-order version of the spectral cell method together requires less memory storage and less CPU time than other possible versions, when combined simultaneously with explicit time-integration algorithms. Moreover, as the implementation of the proposed method in available finite element programs is straightforward, these properties turn the method into a viable tool for practical applications such as structural health monitoring [13], quantitative ultrasound applications [4], or the active control of vibrations and noise [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gopalakrishnan S, Ruzzene M, Hanagud S (2011) Computational techniques for structural health monitoring. Springer, London

    Book  Google Scholar 

  2. Willberg C, Duczek S, Vivar-Perez JM, Schmicker D, Gabbert U (2012) Comparison of different higher order finite element schemes for the simulation of lamb waves. Comput Methods Appl Mech Eng 241–244:246–261

    Article  Google Scholar 

  3. Ostachowicz W, Kudela P, Krawczuk M, Żak A (2011) Guided waves in structures for SHM: the time-domain spectral element method. Wiley, West Sussex

    Google Scholar 

  4. Laugier P, Haïat G (2010) Bone quantitative ultrasound. Springer, Amsterdam

    Google Scholar 

  5. Gopalakrishnan S, Chakraborty A (2008) Spectral finite element method : wave propagation, diagnostics and control in anisotropic and inhomogeneous structures. Computational fluid and solid mechanics. Springer, London

    Google Scholar 

  6. Ringwelski S, Gabbert U (2010) Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element boundary element approach. Smart Mater Struct 19(10):105009

    Article  Google Scholar 

  7. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: towards integration of CAD and FEM. Wiley, New York

    Book  Google Scholar 

  8. Parvizian J, Düster A, Rank E (2007) Finite cell method—h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MATH  MathSciNet  Google Scholar 

  9. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MATH  Google Scholar 

  10. Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498–1506

    Article  MATH  MathSciNet  Google Scholar 

  11. Ramiaère I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781

    Article  Google Scholar 

  12. Ramiaère I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387

    Article  MathSciNet  Google Scholar 

  13. Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50:413–431

    Article  MATH  MathSciNet  Google Scholar 

  14. Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia E, Burgkart R, Rank E (2012) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  Google Scholar 

  15. Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471

    Article  Google Scholar 

  16. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202

    Article  MATH  Google Scholar 

  17. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MATH  MathSciNet  Google Scholar 

  18. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the \(\text{ J }_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  Google Scholar 

  19. Abedian A, Parvizian J, Düster A, Rank E (2014) The FCM compared to the h-version FEM for elasto-plastic problems. Appl Math Mech

  20. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13:57–78

    Article  MathSciNet  Google Scholar 

  21. Joulaian M, Düster A (2013a) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762

    Article  MATH  Google Scholar 

  22. Joulaian M, Düster A (2013b) The hp-d version of the finite cell method with local enrichment for multiscale problems. Proc Appl Math Mech 13:259–260. doi:10.1002/pamm.201310125

    Google Scholar 

  23. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64:3527–3541

    Article  MATH  MathSciNet  Google Scholar 

  24. Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring, vol. 86951U, International Society for Optics and Photonics

  25. Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of Lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng

  26. Frehner M, Schmalholz S, Saenger D, Steeb H (2008) Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves. Phys Earth Planet Inter 171:112–121

    Article  Google Scholar 

  27. Staszewski WJ (2003) Health monitoring for aerospace structures. Wiley, Chichester

    Book  Google Scholar 

  28. Boller C (2009) Encyclopedia of strcutural helath monitoring. Wiley, Chichester

    Book  Google Scholar 

  29. Pohl J, Willberg C, Gabbert U, Mook G (2012) Experimental and theoretical analysis of Lamb wave generation by piezoceramic actuators for structural health monitoring. Exp Mech 52:429–438

    Article  Google Scholar 

  30. Duczek S, Willberg C, Schmicker D, Gabbert U (2012) Development, validation and comparison of higher order finite element approaches to compute the propagation of Lamb waves efficiently. Key Eng Mater 518:95–105

    Article  Google Scholar 

  31. Patera A (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  32. Komatitsch D, Vilotte J-P, Vai R, Castillo-Covarrubias J, Sanchez-Sesma F (1999) The spectral element method for elastic wave equations—application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164

    Article  MATH  Google Scholar 

  33. Maday Y, Patera A (1989) Spectral element methods for the incompressible Navier–Stokes equations. In: State-of-the-art surveys on computational mechanics (A90–47176 21–64). American Society of Mechanical Engineers, New York, 1989, pp. 71–143 (Research supported by DARPA)

  34. Rønquist E, Patera A (1987) A legendre spectral element method for the Stefan problem. Int J Numer Methods Eng 24:2273–2299

    Article  Google Scholar 

  35. Zienkiewicz O, Taylor R (2005) The finite element method—its basis and fundamentals. Butterworth-Heinemann, Boston

    Google Scholar 

  36. Bathe K (2002) Finite-elemente-methoden. Springer-Verlag, Berlin

    Book  Google Scholar 

  37. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York

    Google Scholar 

  38. Bishop J (2003) Rapid stress analysis of geometrically complex domains using implicit meshing. Comput Mech 30:460–478

    Article  MATH  Google Scholar 

  39. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66:761–795

    Article  MATH  MathSciNet  Google Scholar 

  40. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554

    Article  MATH  MathSciNet  Google Scholar 

  41. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuites in the finite cell method. Int J Comput Methods 10(3):1350002/1–1350002/24

    Article  Google Scholar 

  42. Belytschko T, Hughes TJR (1986) Computational methods for transient analysis, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  43. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1. Wiley, Chichester, pp 119–139

    Google Scholar 

  44. Szabó BA, Babuška I (2011) Introduction to finite element analysis: formulation, verification, and validation. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  45. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703

    Article  MATH  Google Scholar 

  46. Sprague M, Geers T (2008) Legendre spectral finite elements for structural dynamics analysis. Commun Numer Methods Eng 24:1953–1965

    Article  MATH  MathSciNet  Google Scholar 

  47. Dauksher W, Emery A (1999) An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation. Int J Numer Methods Eng 45:1099–1113

    Article  MATH  Google Scholar 

  48. Cook RD, Malkus DS, Plesha ME (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, Lincoln

    Google Scholar 

  49. Wang X, Seriani G, Lin W (2007) Some theoretical aspects of elastic wave modeling with a recently developed spectral element method. Sci China Ser G 50:185–207

    Article  MATH  Google Scholar 

  50. Ainsworth M, Wajid H (2009) Dispersive and dissipative behavior of the spectral element method. SIAM J Numer Anal 47:3910–3937

    Article  MATH  MathSciNet  Google Scholar 

  51. Ainsworth M, Wajid H (2010) Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J Numer Anal 48:346–371

    Article  MATH  MathSciNet  Google Scholar 

  52. Dauksher W, Emery AF (1997) Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements. Finite Elem Anal Des 26:115–128

    Article  MATH  Google Scholar 

  53. Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217–233

    Article  MATH  Google Scholar 

  54. Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Methods Appl Mech Eng 198:2297–2317

    Article  MATH  Google Scholar 

  55. Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthq Eng Struct Dyn 4:245–249

    Article  Google Scholar 

  56. Düster A, Kollmannsberger S (2010) \(\text{ AdhoC }^{4}\) - User’s Guide. Lehrstuhl für Computation in Engineering, TU München, Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, TU Hamburg-Harburg

  57. http://software.intel.com/en-us/intel-mkl/

  58. Rank E, Rücker M, Düster A, Bröker H (2001) The efficiency of the p-version finite element method in a distributed computing environment. Int J Numer Methods Eng 52:589–604

    Google Scholar 

  59. Ahmad ZAB, Gabbert U (2012) Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. Ultrasonics 52:815–820

    Article  Google Scholar 

  60. Chui CK (1992) An introduction to wavelets. Academic Press Professional Inc, San Diego

    MATH  Google Scholar 

  61. Hosseini SMH, Kharaghani A, Kirsch C, Gabbert U (2013) Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study. Compos Struct 97:387–400

    Article  Google Scholar 

  62. Szabó B, Babuška I (2003) An introduction to finite element analysis. Wiley, New York

    Google Scholar 

  63. Bröker H (2001) Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München.

  64. Királyfalvi G, Szabó B (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elem Anal Des 27:85–97

    Article  MATH  MathSciNet  Google Scholar 

  65. Gordon WJ (1971) Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J Numer Anal 8:158–177

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first and last authors gratefully acknowledge the support provided by the German Research Foundation (DFG) under Grant DU405/4. The second and the third authors would like to express their gratitude to the DFG for the support received under Grant GA 480/13-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Joulaian.

Additional information

Dedicated to Professor Dr.rer.nat. Ernst Rank on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joulaian, M., Duczek, S., Gabbert, U. et al. Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54, 661–675 (2014). https://doi.org/10.1007/s00466-014-1019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1019-z

Keywords

Navigation