Skip to main content
Log in

A generalized 2D non-local lattice spring model for fracture simulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A generalized 2D non-local lattice spring model, the Volume-Compensated Particle Model (VCPM), is proposed for the study of fracture phenomena of homogeneous isotropic solids in this paper. In the proposed VCPM, both the pairwise local and the multi-body non-local interaction forces among particles are considered. Special focus is on the investigation of the failure anisotropy or directional preference of the crack path while modeling fracture phenomena within the framework of regular lattice spring models. Different from random network models, a generalized regular lattice framework to include multiple non-local forces from neighboring particles is proposed to eliminate/reduce this well-known failure anisotropy issue. Several benchmarks are tested to assess the performance of the proposed methodology. Discussions and conclusions are drawn based on the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8:A619–A715

    MathSciNet  Google Scholar 

  2. Bažant Z, Tabbara M, Kazemi M, Pijaudierc - Cabot G (1990) Random particle model for fracture of aggregate or fiber composites. J Eng Mech 116(8):1686–1705

    Article  Google Scholar 

  3. Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35–60

    Article  MathSciNet  Google Scholar 

  4. Askar A (1985) Lattice dynamical foundations of continuum theories. World Scientific, Singapore

    Google Scholar 

  5. Zubelewicz A, Bažant Z (1987) Interface element modeling of fracture in aggregate composites. J Eng Mech 113(11):1619–1630

    Article  Google Scholar 

  6. Beale PD, Srolovitz DJ (1988) Elastic fracture in random materials. Phys Rev B 37(10):5500–5507

    Article  Google Scholar 

  7. Chen I-WG, Hassold N, Srolovitz DJ (1990) Computer simulation of final-stage sintering; I, model, kinetics and microstructure. J Am Ceremic Soc 73:2857–2864

    Article  Google Scholar 

  8. Born M, Huang K (1954) Dynamic theory of crystal lattices. Oxford Press, Oxford

    Google Scholar 

  9. Keating PN (1966) Effect of the invariance requirements on the elastic moduli of a sheet containing circular holes. J Mech Phys Solids 40:1031–1051

    Google Scholar 

  10. Schlangen E, Garboczi EJ (1997) Fracture simulations of concrete using lattice models: computational aspects. Eng Fract Mech 57(2–3):319–332

    Article  Google Scholar 

  11. Grassl P, Bazant ZP, Cusatis G (2006) Lattice-cell approach to quasibrittle fracture modeling. Computational modelling of concrete Structures. In: Proceedings of the EURO-C conference 2006, in Mayrhofen, Tyrol, Austria

  12. Chen H, Lin E, Liu Y (2014) A novel volume-compensated particle method for 2D elasticity and plasticity analysis. Int J Solids Struct 51(9):1819–1833

    Article  Google Scholar 

  13. Trädegård A, Nilsson F, Östlund S (1998) FEM-remeshing technique applied to crack growth problems. Comput Methods Appl Mech Eng 160(1–2):115–131

    Article  MATH  Google Scholar 

  14. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

  15. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  16. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nuclear Eng Design 237(12–13):1250–1258

    Article  Google Scholar 

  18. Gerstle W, Geitanbaf HH, Asadollahi A (2013) Computational simulation of reinforced concrete using the micropolar state-based peridynamic hexagonal lattice model. In: 8th international conference on fracture mechanics of concrete and concrete structures, Barcelona, Spain, pp 261–270

  19. Jirásek M, Bažant Z (1994) Macroscopic fracture characteristics of random particle systems. Int J Fract 69(3):201–228

    Article  Google Scholar 

  20. Monette L, Anderson MP (1994) Elastic and fracture properties of the two-dimensional triangular and square lattice. Model Simul Mater Sci Eng 2(1):53–66

    Article  Google Scholar 

  21. Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):94–106

    Article  Google Scholar 

  22. Zhao S-F, Zhao G-F (2012) Implementation of a high order lattice spring model for elasticity. Int J Solids Struct 49(18):2568–2581

    Article  Google Scholar 

  23. Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. In: International conference on impact loading and dynamic behavior of materials, pp 185–195

  24. Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27(3–4):187–201

    Article  Google Scholar 

  25. Grah M, Alzebdeh K, Sheng PY, Vaudin MD, Bowman KJ, Ostoja-Starzewski M (1996) Brittle intergranular failure in 2D microstructures: experiments and computer simulations. Acta Materialia 44(10):4003–4018

    Article  Google Scholar 

  26. Schlangen E, Garboczi EJ (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144

    Article  MATH  Google Scholar 

  27. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  28. Song J-H, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42(2):239–250

  29. Song J-H, Belytschko T (2009) Cracking node method for dynamic fracture with finite elements. Int J Numer Methods Eng 77(3):360–385

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/Spectral element method for dynamic crack propagation. Int J Fract 169(2):183–198

    Article  MATH  Google Scholar 

  31. Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int J Fract 143(3):245–271

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the two anonymous reviewers whose comments greatly improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lin, E., Jiao, Y. et al. A generalized 2D non-local lattice spring model for fracture simulation. Comput Mech 54, 1541–1558 (2014). https://doi.org/10.1007/s00466-014-1075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1075-4

Keywords

Navigation