Skip to main content
Log in

Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The modeling of progressive delamination by means of a discrete damage zone model within the extended finite element method is investigated. This framework allows for both bulk and interface damages to be conveniently traced, regardless of the underlying mesh alignment. For discrete interfaces, a new mixed-mode force–separation relation, which accounts for the coupled interaction between opening and sliding modes, is proposed. The model is based on the concept of Continuum Damage Mechanics and is shown to be thermodynamically consistent. An integral-type nonlocal damage is adopted in the bulk to regularize the softening material response. The resulting nonlinear equations are solved using a Newton scheme with a dissipation-based arc-length constraint, for which an analytical Jacobian is derived. Several benchmark delamination studies, as well as failure analyses of a fiber/epoxy unit cell, are presented and discussed in detail. The proposed model is validated against available analytical/experimental data and is found to be robust and mesh insensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. de Borst R (2003) Numerical aspects of cohesive-zone models. Eng Fract Mech 70(14):1743–1757

    Article  Google Scholar 

  2. de Borst R, Gutiérrez MA, Wells GN, Remmers JJC, Askes H (2004) Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. Int J Numer Methods Eng 60(1):289–315

    Article  MATH  Google Scholar 

  3. Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput Methods Appl Mech Eng 196(2124):2338–2357

    Article  MATH  Google Scholar 

  4. Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  5. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  6. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  7. Park K, Paulino GH (2013) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):2829–2848

    Article  Google Scholar 

  8. Park K, Paulino GH, Roesler J (2010) Cohesive fracture model for functionally graded fiber reinforced concrete. Cem Concr Res 40(6):956–965

    Article  Google Scholar 

  9. Zhang Z, Paulino G (2005) Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int J Plast 21(6):1195–1254

    Article  MATH  Google Scholar 

  10. Espinosa H, Dwivedi S, Lu H-C (2000) Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws. Comput Methods Appl Mech Eng 183(34):259–290

    Article  MATH  Google Scholar 

  11. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

  12. Li S, Ghosh S (2006) Extended voronoi cell finite element model for multiple cohesive crack propagation in brittle materials. Int J Numer Methods Eng 65:1028–1067

    Article  MATH  Google Scholar 

  13. Liu X, Duddu R, Waisman H (2012) Discrete damage zone model for fracture initiation and propagation. Eng Fract Mech 92:1–18

    Article  Google Scholar 

  14. Song SH, Paulino GH, Buttlar WG (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73(18):2829–2848

    Article  Google Scholar 

  15. Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metalceramic interfaces. Int J Solids Struct 39(10):2827–2855

    Article  MATH  Google Scholar 

  16. Alfano G (2006) On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol 66(6):723–730

    Article  Google Scholar 

  17. Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783–1796

    Article  Google Scholar 

  18. Xu X-P, Needleman A (1985) Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int J Fract 74:253–275

    Google Scholar 

  19. Schellekens JCJ, De Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36(1):43–66

    Article  MATH  Google Scholar 

  20. Simo J, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296

    Article  MathSciNet  MATH  Google Scholar 

  21. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  22. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570

    Article  MATH  Google Scholar 

  23. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

  24. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  25. Unger JF, Eckardt S, Knke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng 196(4144):4087–4100

    Article  MATH  Google Scholar 

  26. Zamani A, Gracie R, Reza Eslami M (2012) Cohesive and non-cohesive fracture by higher-order enrichment of XFEM. Int J Numer Methods Eng 90(4):452–483

    Article  MATH  Google Scholar 

  27. Xiao QZ, Karihaloo BL, Liu XY (2007) Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM. Int J Numer Methods Eng 69(12):2606–2635

    Article  MATH  Google Scholar 

  28. Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760

    Article  MATH  Google Scholar 

  29. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75(16):4740–4758

    Article  Google Scholar 

  30. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabczuk T (2013) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Appl Math 2013:38

    Article  MathSciNet  Google Scholar 

  32. Cui W, Wisnom M (1993) A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites 24(6):467–474

    Article  Google Scholar 

  33. Xie D, Salvi AG, Sun C, Waas AM, Caliskan A (2006) Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites. J Compos Mater 40(22):2025–2046

    Article  Google Scholar 

  34. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Pijaudier-Cabot G, Bažant Z (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  36. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory-application to concrete. J Eng Mech 115(2):345–365

    Article  Google Scholar 

  37. Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  38. de Borst R, Sluys L, Muehlhaus H, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121

    Article  Google Scholar 

  39. Bažant Z, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293

    Article  MATH  Google Scholar 

  40. Jiang W-G, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69(9):1982–1995

    Article  MATH  Google Scholar 

  41. Turon A, Camanho P, Costa J, Dávila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38(11):1072–1089

    Article  Google Scholar 

  42. Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41(6):1119–1135

    Article  MATH  Google Scholar 

  43. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736

  44. Camanho PP, Dávila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438

    Article  Google Scholar 

  45. Wu EM, Reuter RC (1965) Crack extension in fiberglass reinforced plastics. T&AM Report No. 275, University of Illinois

  46. Reeder JR (1992) Evaluation of mixed-mode delamination failure criteria. TM 104210, NASA

  47. Coleman B, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178

    Article  MathSciNet  MATH  Google Scholar 

  48. van den Bosch M, Schreurs P, Geers M (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73(9):1220–1234

    Article  Google Scholar 

  49. McGarry JP, Máirtín EO, Parry G, Beltz GE (2014) Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. J Mech Phys Solids 63:336–362

    Article  Google Scholar 

  50. Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908

    Article  Google Scholar 

  51. Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647–1668

    Article  MathSciNet  MATH  Google Scholar 

  52. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(14):289–314

    Article  MATH  Google Scholar 

  53. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  54. Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240

    Article  MATH  Google Scholar 

  55. Fries T-P (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532

    Article  MathSciNet  MATH  Google Scholar 

  56. Jirásek M, Patzák B (2002) Consistent tangent stiffness for nonlocal damage models. Comput Struct 80(1415):1279–1293

    Article  Google Scholar 

  57. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  MATH  Google Scholar 

  58. Crisfield M (1981) A fast incremental/iterative solution procedure that handles snap-through. Comput Struct 13(13):55–62

    Article  MATH  Google Scholar 

  59. Verhoosel CV, Remmers JJC, Gutiérrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77(9):1290–1321

    Article  MATH  Google Scholar 

  60. Alfano G, Crisfield MA (2003) Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches. Int J Numer Methods Eng 58(7):999–1048

    Article  MATH  Google Scholar 

  61. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

  62. Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75(16):4774–4792

    Article  Google Scholar 

  63. Turon A, Dávila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682

    Article  Google Scholar 

  64. Irwin GR (1960) Plastic zone near a crack and fracture toughness. In: Proceedings of the seventh sagamore ordnance materials conference, vol. IV. Syracuse University Press, pp 63–78

  65. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137

    Article  MATH  Google Scholar 

  66. Turon A, Camanho P, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92(8):1857–1864

    Article  Google Scholar 

  67. Asp L (1998) The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58(6):967–977

    Article  Google Scholar 

  68. Borg R, Nilsson L, Simonsson K (2002) Modeling of delamination using a discretized cohesive zone and damage formulation. Compos Sci Technol 62(1011):1299–1314

    Article  Google Scholar 

  69. Budzik M, Jumel J, Salem NB, Shanahan M (2013) Instrumented end notched flexure crack propagation and process zone monitoring. Part II: Data reduction and experimental. Int J Solids Struct 50(2):310–319

    Article  Google Scholar 

  70. Reeder JR, Crews JH (1990) Mixed-mode bending method for delamination testing. AIAA J 28(7):1270–1276

    Article  Google Scholar 

  71. Blanco N, Turon A, Costa J (2006) An exact solution for the determination of the mode mixture in the mixed-mode bending delamination test. Compos Sci Technol 66(10):1256–1258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Waisman.

Appendices

Appendix 1

For completeness, we provide the proof in this appendix that the power law criterion given in (33) can be recovered by using the proposed mixed-mode force–separation relation (31), if the discrete interface is subjected to a deformation history with a constant ratio \(\beta = \delta _n /\delta _t\).

Without loss of generality, we only consider a monotonic loading with \(\delta _n \ge 0\). Then the history ratio (29) can be rewritten as

$$\begin{aligned} \zeta&= \left[ \left( \dfrac{\delta _{n}}{\delta ^{\mathrm {cr}}_n} \right) ^{\alpha } + \left( \dfrac{| \delta _{t} |}{\delta ^{\mathrm {cr}}_t} \right) ^{\alpha } \right] ^{1/\alpha }\nonumber \\&= \delta _{n} \left[ \left( \dfrac{1}{\delta ^{\mathrm {cr}}_n} \right) ^{\alpha } + \left( \dfrac{1}{|\beta |\delta ^{\mathrm {cr}}_t} \right) ^{\alpha } \right] ^{1/\alpha } \end{aligned}$$
(80)

Accoding to the mixed-mode damage law (30), the critical separation \(\bar{\delta }_i\) corresponding to the damage initiation can be calculated as

$$\begin{aligned} \bar{\delta }_n=\frac{1}{\eta },\,\,\,\,\bar{\delta }_t=\frac{1}{\beta \eta } \end{aligned}$$
(81)

where

$$\begin{aligned} \eta =\left[ \left( \dfrac{1}{\delta ^{\mathrm {cr}}_n} \right) ^{\alpha } + \left( \dfrac{1}{|\beta |\delta ^{\mathrm {cr}}_t} \right) ^{\alpha } \right] ^{1/\alpha } \end{aligned}$$
(82)

Given the proposed mixed-mode force–separation relation (31), the energy release rate components of mode I and mode II due to the complete decohesion are obtained by splitting the integrals (44) into two parts:

$$\begin{aligned} G_{\mathrm {I}}&= \int _{0}^{\infty } F_{n}(\delta _n, \delta _t) \, d\delta _{n} /l_{s} \nonumber \\&= \left[ \int _{0}^{\frac{1}{\eta }} K_{n}^{0} \delta _n \, d\delta _n + \int ^{\infty }_{\frac{1}{\eta }} \dfrac{K_{n}^{0} \delta _n}{\exp (\eta \delta _n -1)} \, d\delta _n \right] \Bigg /l_s \nonumber \\&= \left( \dfrac{K_n^0}{2 \eta ^2} + \dfrac{2K_n^0}{\eta ^2} \right) /l_s = \dfrac{2.5K_n^0}{\eta ^2 l_s}\end{aligned}$$
(83)
$$\begin{aligned} G_{\mathrm {II}}&= \int _{0}^{\infty } F_{t}(\delta _n, \delta _t) \, d\delta _{t} /l_{s} \nonumber \\&= \left[ \int _{0}^{\frac{1}{\beta \eta }} K_{t}^{0} \delta _t \, d\delta _t + \int ^{\infty }_{\frac{1}{\beta \eta }} \dfrac{K_{t}^{0} \delta _t}{\exp (\beta \eta \delta _t -1)} \, d\delta _t \right] \Bigg /l_s \nonumber \\&= \left( \dfrac{K_t^0}{2 \beta ^2 \eta ^2} + \dfrac{2K_t^0}{\beta ^2 \eta ^2} \right) /l_s = \dfrac{2.5K_t^0}{\beta ^2 \eta ^2 l_s} \end{aligned}$$
(84)

Considering the expressions for the initial stiffnesses (28) and damage coefficient (23) results:

$$\begin{aligned} \dfrac{G_{\mathrm {I}}}{G_{\mathrm {IC}}} = \dfrac{1}{\eta ^2 {\delta ^{\mathrm {cr}}_n}^2},\,\,\,\, \dfrac{G_{\mathrm {II}}}{G_{\mathrm {IIC}}} = \dfrac{1}{|\beta |^2 \eta ^2 {\delta ^{\mathrm {cr}}_t}^2} \end{aligned}$$
(85)

Finally, the proof is completed:

$$\begin{aligned} \left( \dfrac{G_{\mathrm {I}}}{G_{\mathrm {IC}}} \right) ^{\alpha /2} +\left( \dfrac{G_{\mathrm {II}}}{G_{\mathrm {IIC}}} \right) ^{\alpha /2}&= \dfrac{1}{\eta ^{\alpha }} \left[ \left( \dfrac{1}{\delta ^{\mathrm {cr}}_n} \right) ^{\alpha } + \left( \dfrac{1}{|\beta |\delta ^{\mathrm {cr}}_t} \right) ^{\alpha } \right] \nonumber \\&= \dfrac{\eta ^{\alpha }}{\eta ^{\alpha }} = 1 \end{aligned}$$
(86)

Appendix 2

Considering the bulk damage law (12) and the mixed-mode force–separation relation (31) for discrete interfaces, the partial derivatives appear in Eqs. (70)–(73) are computed explicitly as follows:

$$\begin{aligned} d^{\prime }&=\dfrac{\partial {D^{\Omega }}}{\partial {\kappa }} =\left\{ \begin{array}{lcc} 0 &{} \text{ if } &{} \kappa \le \epsilon ^{\mathrm {cr}} \\ B \exp (-B(\kappa -\epsilon ^{\mathrm {cr}})) &{} \text{ if } &{} \kappa > \epsilon ^{\mathrm {cr}} \end{array} \right. \end{aligned}$$
(87)
$$\begin{aligned} \kappa ^{\prime }&=\dfrac{\partial {\kappa }}{\partial {\tilde{\epsilon }_{eq}}} =\left\{ \begin{array}{ccc} 0 &{} \text{ if } &{} \text{ unloading } \\ 1 &{} \text{ if } &{} \text{ loading } \end{array} \right. \end{aligned}$$
(88)

The partial derivative \(\mathbf {g}\) is equal to

$$\begin{aligned} \mathbf {g}=\dfrac{\partial {\tilde{\epsilon }_{eq}}}{\partial {\varvec{\epsilon }}}= \dfrac{\partial {\tilde{\epsilon }_{eq}}}{\partial {\varvec{e}}} \dfrac{\partial {\varvec{e}}}{\partial {\varvec{I}}} \dfrac{\partial {\varvec{I}}}{\partial {\varvec{\epsilon }}} \end{aligned}$$
(89)

where \(\varvec{e}\) and \(\varvec{I}\) are arranged into column vectors as follows:

$$\begin{aligned} \varvec{I}&=\{I_1\,I_2 \}^{\mathrm {T}}\,\,\,\,\, \text{ with }\, I_1=\epsilon _{xx}+\epsilon _{yy},\, I_2=\epsilon _{xx} \epsilon _{yy}-\gamma ^2_{xy}/4 \end{aligned}$$
(90)
$$\begin{aligned} \varvec{e}&=\{e_1\,e_2\,e_3 \}^{\mathrm {T}}\,\,\text{ with }\, e_1=\dfrac{I_1}{2}+\dfrac{\sqrt{{I_1}^2-4I_2}}{2},\nonumber \\ e_2&=\dfrac{I_1}{2}-\dfrac{\sqrt{{I_1}^2-4I_2}}{2},\, e_3=h\dfrac{\nu }{\nu -1}I_1 \end{aligned}$$
(91)

In the above equations, \(\nu \) is the Poisson ratio, \(h=1\) for plane-stress cases, and \(h=0\) for plane-strain cases. Then the partial derivative of the Eq. (89) are given by

$$\begin{aligned} \dfrac{\partial {\tilde{\epsilon }_{eq}}}{\partial {\varvec{e}}}&= \left\{ \dfrac{\langle e_1 \rangle }{\sqrt{\langle e_1 \rangle ^2 +\langle e_2 \rangle ^2+\langle e_3 \rangle ^2}}\, \dfrac{\langle e_2 \rangle }{\sqrt{\langle e_1 \rangle ^2 +\langle e_2 \rangle ^2+\langle e_3 \rangle ^2}}\,\right. \nonumber \\&\qquad \left. \dfrac{\langle e_3 \rangle }{\sqrt{\langle e_1 \rangle ^2 +\langle e_2 \rangle ^2+\langle e_3 \rangle ^2}} \right\} \end{aligned}$$
(92)
$$\begin{aligned} \dfrac{\partial {\varvec{e}}}{\partial {\varvec{I}}}&= \begin{bmatrix} \dfrac{1}{2}+\dfrac{I_1}{2\sqrt{{I_1}^2-4I_2}}&- \dfrac{1}{\sqrt{{I_1}^2-4I_2}} \\ \dfrac{1}{2}-\dfrac{I_1}{2\sqrt{{I_1}^2-4I_2}}&\dfrac{1}{\sqrt{{I_1}^2-4I_2}} \\ h\dfrac{\nu }{\nu -1}&0 \end{bmatrix} \end{aligned}$$
(93)
$$\begin{aligned} \dfrac{\partial {\varvec{I}}}{\partial {\varvec{\epsilon }}}&= \begin{bmatrix} 1&1&0 \\ \epsilon _{yy}&\epsilon _{xx}&-\dfrac{\gamma _{xy}}{2} \end{bmatrix} \end{aligned}$$
(94)

Finally, the partial derivative \(\mathbf {M}\) for \(\delta _n \ge 0\) is evaluated by differentiating the Eq. (31) as

$$\begin{aligned} \mathbf {M}=\dfrac{\partial {\mathbf {F}^L}}{\partial {\varvec{\delta }^L}}= \left\{ \begin{array}{lcc} \mathbf {K}^0 &{} \text{ if } &{} \zeta \le 1 \\ \dfrac{\mathbf {K}^0}{\exp (\zeta -1)} &{} \text{ if } &{} \zeta > 1\, \text{(unloading) } \\ \dfrac{\mathbf {K}^0}{\exp (\zeta -1)} \left\{ \mathbf {I}-\zeta ^{1-\alpha } \begin{bmatrix} \dfrac{|\delta _t|^{\alpha }}{(\delta ^{\mathrm {cr}}_t)^{\alpha }} &{} \dfrac{\delta _t \delta _n^{\alpha -1}}{(\delta ^{\mathrm {cr}}_n)^{\alpha }}\\ \dfrac{\mathrm {sign}(\delta _t)\delta _n|\delta _t|^{\alpha -1}}{(\delta ^{\mathrm {cr}}_t)^{\alpha }} &{} \dfrac{\delta _n^{\alpha }}{(\delta ^{\mathrm {cr}}_n)^{\alpha }} \end{bmatrix} \right\} &{} \text{ if } &{} \zeta > 1\, \text{(loading) } \end{array} \right. \end{aligned}$$
(95)

with \(\mathbf {I}\) the identity matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Waisman, H. Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model. Comput Mech 55, 1–26 (2015). https://doi.org/10.1007/s00466-014-1079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1079-0

Keywords

Navigation