Skip to main content
Log in

Finite rotation FE-simulation and active vibration control of smart composite laminated structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present article focuses on the nonlinear finite element simulation and control of large amplitude vibrations of smart piezolaminated composite structures. Full geometrically nonlinear finite rotation strain–displacement relations and Reissner–Mindlin first-order shear deformation hypothesis to include the transverse shear effects are considered to derive the variational formulation. A quadratic variation of electric potential is assumed in transverse direction. An assumed natural strain method for the shear strains, an enhanced assumed strain method for the membrane strains and an enhanced assumed gradient method for the electric field is incorporated to improve the behavior of a four-node shell element. Numerical simulations presented in this article show the accurate prediction capabilities of the proposed method, especially for structures undergoing finite deformations and rotations, in comparison to the results obtained by simplified nonlinear models available in references and also with those obtained by using the C3D20RE solid element for piezoelectric layers in the Abaqus code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alaimo A, Milazzo A, Orlando C (2013) A four-node MITC finite element for magneto-electro-elastic multilayered plates. Comput Struct 129:120–133

    Article  Google Scholar 

  2. Allik H, Hughes JR (1970) Finite element method for piezoelectric vibrations. Int J Numer Methods Eng 2:151–157

    Article  Google Scholar 

  3. Bao Y, Tzou HS, Venkayya VB (1998) Analysis of nonlinear piezothermoelastic laminated beams with electric and temperature effects. J Sound Vib 209:505–518

    Article  Google Scholar 

  4. Bathe KJ, Dvorkin E (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  5. Batra RC, Liang XQ (1997) Finite dynamic deformations of smart structures. Comput Mech 20:427–438

    Article  MATH  Google Scholar 

  6. Carrera E (1997) An improved Reissner–Mindlin-type model for the electromechanical analysis of multi-layered plates. J Intell Mater Syst Struct 8:232–248

    Article  Google Scholar 

  7. Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon PVD and RMVT, Part 2: numerical implementations. Int J Numer Methods Eng 55:253–291

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng J, Wang B, Du SY (2005) A theoretical analysis of piezolaminated/composite anisotropic laminate with larger-amplitude deflection effect, part 1: fundamental equations. Int J Solids Struct 42:6166–6180

    Article  MATH  Google Scholar 

  9. Chróścielewski J, Makowski J, Stumpf H (1997) Finite element analysis of smooth, folded and multi-shell structures. Comput Methods Appl Mech Eng 141:1–46

    Article  MATH  Google Scholar 

  10. Chróścielewski J, Klosowski P, Schmidt R (1998) Theory and numerical simulation of nonlinear vibration control of arches with piezoelectric distributed actuators. Mach Dyn Prob 20:73–90

    Google Scholar 

  11. Chróścielewski J, Klosowski P, Schmidt R (1997) Modelling and FE-analysis of large deflection shape and vibration control of structures via piezoelectric layers. In: Gabbert U, Fortschritt-Berichte VDI (eds) Smart mechanical systems—adaptronics, Serie 11, Nr. 244. VDI-Verlag, Düsseldorf, pp 53–62

  12. Chróścielewski J, Schmidt R (1999) Nonlinear static and transient response of smart beams and shells with piezoelectric layers. In: Anderson GL, Garg D, Wang KW (eds) Proceedings of the fourth ARO workshop on smart structures, Penn State, State College, Pennsylvania, Session 8: modeling and characterisation issues. U.S. Army Research Office, USA

  13. Cotoni V, Massion P, Cote F (2006) A finite element for piezoelectric multi-layered plates combined higher-order and piecewise linear \({C^{0}}\) formulation. J Intell Mater Syst Struct 17:155–165

    Article  Google Scholar 

  14. Crawley EF, de Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:1373–1385

    Article  Google Scholar 

  15. Dash P, Singh BN (2009) Nonlinear free vibration of piezoelectric laminated composite plate. Finite Elem Anal Des 45:686–694

    Article  Google Scholar 

  16. de Faria AR, de Almedia SFM (1999) Enhancement of pre-buckling behavior of composite beams with geometric imperfections using piezoelectric actuators. Composites 30:43–50

    Article  Google Scholar 

  17. Gao JX, Shen YP (2003) Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J Sound Vib 264:911–28

    Article  MATH  Google Scholar 

  18. Ghoshal A, Kim HS, Chattopadhyay A, Prosser WH (2005) Effect of delamination on transient history of smart composite plates. Finite Elem Anal Des 41:850–74

    Article  MathSciNet  Google Scholar 

  19. Habip LM (1965) Theory of elastic shells in the reference state. Tech Mech 34:228–237

    Google Scholar 

  20. Haung XL, Shen HS (2005) Nonlinear free and force vibration of simply supported shear deformable laminated plates with piezoelectric actuators. J Sound Vib 47:187–208

    Google Scholar 

  21. Hughes TJR, Tezduyar T (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48:587–596

    Article  MATH  Google Scholar 

  22. Icardi U, Scuiva MD (1996) Large deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater Struct 5:140–164

    Article  Google Scholar 

  23. Kiou H, Mirza S (2000) Piezoelectric induced bending and twisting of laminated composite shallow shells. Smart Mater Struct 6:476–484

    Article  Google Scholar 

  24. Klinkel S, Wagner W (2006) A geometrically nonlinear piezoelectric solid shell element based on mixed multi-field variational formulation. Int J Numer Methods Eng 65:349–382

    Article  MATH  Google Scholar 

  25. Kogl M, Bucalem ML (2005) Analysis of smart laminates using piezoelectric MITC plate and shell elements. Comput Struct 83:1153–1163

    Article  Google Scholar 

  26. Kreja I, Schmidt R, Reddy JN (1996) Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures. Int J Non-Linear Mech 32:1123–1142

    Article  Google Scholar 

  27. Kulakarni SA, Baroja KM (2006) Geometrically nonlinear analysis of smart thin and sandwich plates. J Sandwich Struct Mater 8:321–341

    Article  Google Scholar 

  28. Kundu CK, Maiti DK, Sinha PK (2007) Post buckling analysis of smart laminated doubly curved shells. Compos Struct 81:314–322

    Article  Google Scholar 

  29. Lam KY, Peng XQ, Liu GR, Reddy JN (1997) A finite-element model for piezoelectric composite laminates. Smart Mater Struct 6:583–591

    Article  Google Scholar 

  30. Lammering R (1991) The application of finite shell elements for composites containing piezoelectric polymers in vibration control. Comput Struct 41:1101–1109

    Article  MATH  Google Scholar 

  31. Lee SJ, Reddy JN, Abadi FR (2006) Nonlinear finite element analysis of laminated composite shells with actuating layers. Finite Elem Anal Des 43:1–21

    Article  Google Scholar 

  32. Legner D, Klinkel S, Wagner W (2013) An advanced finite element formulation for piezoelectric shell structures. Int J Numer Methods Eng 95(11):901–927

    Article  MathSciNet  Google Scholar 

  33. Lentzen S, Schmidt R (2004) Geometrically nonlinear composite shells with integrated piezoelectric layers. In: Proceedings of Applied Mathematics and Mechanics. pp 63–66

  34. Lentzen S, Schmidt R (2005) A geometrically nonlinear finite element for transient analysis of piezolaminated shells. In: van Campen DH, Lazurko MD, van den Oever WPJM (eds) Proceedings Fifth EUROMECH nonlinear dynamics conference. Eindhoven University of Technology, Eindhoven, pp 2492–2500

  35. Lentzen S, Klosowski P, Schmidt R (2007) Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells. Smart Mater Struct 16:2265–2274

    Article  Google Scholar 

  36. Lentzen S (2008) Nonlinear coupled thermopiezoelectric modeling and FE-simulation of smart structures. PhD Thesis RWTH Aachen University. In: Fortschritt-Berichte VDI, Reihe 20, Nr. 419. VDI-Verlag, Düsseldorf

  37. Lentzen S, Schmidt R (2008) Nonlinear coupled FE simulations of thermoelectromechanical processes in thin-walled structures. In: Denier JP, Finn MD (eds) Proceedings of the \(22^{nd}\) international congress of theoretical and applied mechanics, Adelaide, Australia, reprinted as Mechanics Down Under, paper 11485. Springer Science+Business Media, Dordrecht

  38. Librescu L, Schmidt R (1988) Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations. Int J Non-Linear Mech 23:217–229

    Article  MATH  Google Scholar 

  39. Marinković D, Köppe H, Gabbert U (2008) Aspects of modeling piezoelectric active thin-walled structures. J Intell Mater Syst Struct 20:1835–1844

    Article  Google Scholar 

  40. Menzel A, Betsch P, Stein E (2004) Konzepte der numerik endlicher rotationen. Tech Mech 24(1):61–66

    Google Scholar 

  41. Moita JMS, Soares CMM, Soares CAM (2002) Geometrically nonlinear analysis of structures with integrated piezoelectric sensor and actuators. Compos Struct 57:253–261

    Article  Google Scholar 

  42. Mukherjee A, Chaudhuri AS (2002) Piezolaminated beams with large deformations. Int J Solids Struct 39:4567–4582

    Article  MATH  Google Scholar 

  43. Mukherjee A, Chaudhuri AS (2005) Nonlinear dynamic response of piezolaminated smart beams. Comput Struct 83:1289–1304

    Google Scholar 

  44. Macvean RH (1978) A simple quadrilateral shell element. Comput Struct 8:175–183

    Article  Google Scholar 

  45. Oh IK, Han JH, Lee I (2000) Postbuckling and vibration characteristics of piezolaminated composite plate subjected to thermopiezoelectric loads. J Sound Vib 233:19–40

    Article  MATH  Google Scholar 

  46. Pai PF, Nayfeh AH, Oh K, Mook DT (1993) A refined non-linear model of composite plates with integrated piezoelectric actuators and sensors. Int J Solids Struct 30(12):1603–30

    Article  MATH  Google Scholar 

  47. Palmerio AF, Reddy JN, Schmidt R (1990) On a moderate rotation theory of elastic anisotropic shells, part 1: theory, part 2: FE analysis. Int J Nonlinear Mech 25:687–714

    Article  MATH  Google Scholar 

  48. Panda S, Ray MC (2008) Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite plates. Finite Elem Anal Des 44:493–504

  49. Rabinovitch O (2005) Geometrically nonlinear behavior of piezolaminated plates. Smart Mater Struct 14:785–798

    Article  Google Scholar 

  50. Schmidt R, Reddy JN (1988) A refined small strain and moderate rotation theory of elastic anisotropic shells. ASME J Appl Mech 55:611–617

    Article  MATH  Google Scholar 

  51. Schmidt R, Vu TD (2009) Nonlinear dynamic FE simulation of smart piezolaminated structures based on first- and third-order transverse shear deformation theory. Adv Mater Res 79(82):1313–1316

    Article  Google Scholar 

  52. Schmidt R, Lentzen S (2009) On nonlinear thermo-electro-elasticity theory and finite element analysis of piezolaminated thin-walled structures. In: Topping BHV, Costa Neves LF, Barros RC (eds) Proceedings of the twelfth international conference on civil, structural and environmental engineering computing, cFunchal, Maderia, Portugal, paper 103. Civil-Comp Press, Stirlingshire

  53. Schmidt R, Rao MN, Vu TD (2012) Nonlinearly coupled thermo-electro-mechanics and multi-field FE analysis of thin-walled structures. In: Choi CK (ed) Proceedings of the 2012 world congress on advances in civil, environmental and materials Rresearch, Seoul. Techno-Press, Seoul, pp 1096–1113

    Google Scholar 

  54. Schulz K, Klinkel S, Wagner W (2011) A finite element formulation for piezoelectric shell structures considering geometrical and material non-linearities. Int J Numer Methods Eng 87(6):491–520

    Article  MATH  MathSciNet  Google Scholar 

  55. Shi G, Atluri SN (1990) Active control of nonlinear dynamic response of space-frames using piezo-electric actuators. Comput Struct 34:549–564

    Article  MATH  Google Scholar 

  56. Sze KY, Yao LQ (2000) Modelling of smart structures with segmented piezoelectric sensors and actuators. J Sound Vib 35:495–520

    Article  Google Scholar 

  57. Sze KY, Yao LQ (2000) A hybrid stress ANS solid-shell element and its generalization for smart structure modeling:part I solid shell element formulation. Int J Numer Methods Eng 48:545–564

    Article  MATH  Google Scholar 

  58. Tzou HS, Zhong JP (1994) Linear theory of piezoelectric shell vibrations. J Sound Vib 175(1):77–88

    Article  MATH  Google Scholar 

  59. Tzou HS, Ye R (1996) Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J 34:110–115

    Article  MATH  Google Scholar 

  60. Varelis D, Saravanos D (2002) Nonlinear coupled mechanics and initial buckling of composite plates with piezoelectric actuators and sensors. Smart Mater Struct 11:330–336

    Article  Google Scholar 

  61. Vu TD, Schmidt R (2011) Nonlinear transient FE analysis of piezolaminated structures. PAMM 11(1):297–298

    Article  Google Scholar 

  62. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666

    Article  MATH  Google Scholar 

  63. Wang DW, Tzou HS, Lee HJ (2004) Control of nonlinear electro/elastic beam and plate system (finite element formulation and analysis). J Vib Acoust 126:63–70

  64. Xia XK, Shen HS (2009) Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators. Compos Struct. doi: 10.1016/j.compstruct.2009.03.18

  65. Yao LQ, Zhang JG, Sinha PK (2004) Nonlinear extension and bending of piezoelectric laminated plate under large applied filed actuation. Smart Mater Struct 13:404–414

    Article  Google Scholar 

  66. Yi S, Ling SF, Ying M (2000) Large deformation finite element analysis of composite structures integrated with piezoelectric sensors and actuators. Finite Elem Anal Des 35:1–15

    Article  MATH  Google Scholar 

  67. Zhang SQ, Schmidt R (2013) Large rotation FE transient analysis of piezolaminated thin-walled structures. Smart Mater Struct 22(10):105025

    Article  Google Scholar 

  68. Zhang SQ, Schmidt R (2014) Large rotation theory for static analysis of composite and piezoelectric laminated thin-walled structures. Thin-Walled Struct 78:16–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.N., Schmidt, R. & Schröder, KU. Finite rotation FE-simulation and active vibration control of smart composite laminated structures. Comput Mech 55, 719–735 (2015). https://doi.org/10.1007/s00466-015-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1132-7

Keywords

Navigation