Skip to main content
Log in

Thermodynamically consistent microstructure prediction of additively manufactured materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Additive manufacturing has risen to the top of research interest in advanced manufacturing in recent years due to process flexibility, achievability of geometric complexity, and the ability to locally modify and optimize materials. The present work is focused on providing an approach for incorporating thermodynamically consistent properties and microstructure evolution for non-equilibrium supercooling, as observed in additive manufacturing processes, into finite element analysis. There are two primary benefits of this work: (1) the resulting prediction is based on the material composition and (2) the nonlinear behavior caused by the thermodynamic properties of the material during the non-equilibrium solution is accounted for with extremely high resolution. The predicted temperature response and microstructure evolution for additively manufactured stainless steel 316L using standard handbook-obtained thermodynamic properties are compared with the thermodynamic properties calculated using the CALculation of PHAse Diagrams (CALPHAD) approach. Data transfer from the CALPHAD approach to finite element analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amine T, Newkirk JW, Liou F (2014) An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers. Case Stud Therm Eng 3:21–34. doi:10.1016/j.csite.2014.02.002. http://www.sciencedirect.com/science/article/pii/S2214157X14000070

  2. Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312. doi:10.1016/S0364-5916(02)00037-8

    Article  Google Scholar 

  3. AZoM.com: AZO Materials: Stainless Steel - Grade 316 (UNS S31600) (2015). http://www.azom.com/properties.aspx?ArticleID=863

  4. Borgenstam A, Höglund L, Ågren J, Engström A (2000) Dictra, a tool for simulation of diffusional transformations in alloys. J Ph Equilib 21(3):269–280. doi:10.1361/105497100770340057

    Article  Google Scholar 

  5. Chang Y, Chen S, Zhang F, Yan X, Xie F, Schmid-Fetzer R, Oates W (2004) Phase diagram calculation: past, present and future. Prog Mater Sci 49(34):313–345. doi:10.1016/S0079-6425(03)00025-2. http://www.sciencedirect.com/science/article/pii/S0079642503000252

  6. Chen Q, Sundman B (2002) Computation of partial equilibrium solidification with complete interstitial and negligible substitutional solute back diffusion. Mater Trans 43(3):551–559. doi:10.2320/matertrans.43.551

    Article  Google Scholar 

  7. Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52(1):69–80. doi:10.1016/j.actamat.2003.08.028. http://www.sciencedirect.com/science/article/pii/S1359645403005081

  8. Dinsdale A (1991) SGTE data for pure elements. Calphad 15(4):317–425. doi:10.1016/0364-5916(91)90030-N. http://www.sciencedirect.com/science/article/pii/036459169190030N

  9. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi S (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263. doi:10.1016/j.matdes.2015.10.002. http://www.sciencedirect.com/science/article/pii/S0264127515305803

  10. Gulliver G (1913) The quantitative effect of rapid cooling upon the constitution of binary alloys. J Inst Met 9:120–157

    Google Scholar 

  11. Gusarov A, Smurov I (2010) Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys Proced, vol 5, part B. In: Laser sssisted net shape engineering 6, proceedings of the LANE 2010, part 2, pp 381–394. doi:10.1016/j.phpro.2010.08.065. http://www.sciencedirect.com/science/article/pii/S1875389210004918

  12. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131(7):072101. doi:10.1115/1.3109245

    Article  Google Scholar 

  13. Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of gibbs energy. Acta Mater 47(18):4481–4505. doi:10.1016/S1359-6454(99)00336-5. http://www.sciencedirect.com/science/article/pii/S1359645499003365

  14. Hillert M (2001) The compound energy formalism. J Alloys Compd 320(2):161–176. doi:10.1016/S0925-8388(00)01481-X

    Article  Google Scholar 

  15. Kaufman L, Ågren J (2014) Calphad, first and second generation birth of the materials genome. Scr Mater 70:3–6. doi:10.1016/j.scriptamat.2012.12.003. http://www.sciencedirect.com/science/article/pii/S1359646212007749

  16. King W, Anderson A, Ferencz R, Hodge N, Kamath C, Khairallah S (2015) Overview of modelling and simulation of metal powder bed fusion process at lawrence livermore national laboratory. Mater Sci Technol 31(8):957–968

    Article  Google Scholar 

  17. Kitashima T (2008) Coupling of the phase-field and CALPHAD methods for predicting multicomponent, solid-state phase transformations. Philos Mag 88(11):1615–1637. doi:10.1080/14786430802243857

    Article  Google Scholar 

  18. Li Q, Chen Y, Jiang Z (1985) Relationship between solidification thermal parameters and dendrite arm spacing and ultimate tensile strength in Al-Cu-Mm alloys. J Less Common Met 110(1):171–174. doi:10.1016/0022-5088(85)90318-2. http://www.sciencedirect.com/science/article/pii/0022508885903182

  19. Manvatkar V, De A, DebRoy T (2015) Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater Sci Technol 31(8):924–930. doi:10.1179/1743284714Y.0000000701

    Article  Google Scholar 

  20. Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf 42(1):61–67. doi:10.1016/S0890-6955(01)00093-1. http://www.sciencedirect.com/science/article/pii/S0890695501000931

  21. Olson GB (2013) Genomic materials design: the ferrous frontier. Acta Mater 61(3):771–781. doi:10.1016/j.actamat.2012.10.045. http://www.sciencedirect.com/science/article/pii/S1359645412007926

  22. Olson GB, Kuehmann CJ (2014) Materials genomics: from calphad to flight. Scr Mater 70:25–30. doi:10.1016/j.scriptamat.2013.08.032. http://www.sciencedirect.com/science/article/pii/S1359646213004375

  23. Saunders N (2009) The application of thermodynamic and material property modeling to process simulation of industrial alloys, metals process simulation. In: Furrer DU, Semiatin SL (eds) ASM Handbook, Vol 22B. ASM International, Materials Park, pp 132–153

  24. Schaffnit P, Stallybrass C, Konrad J, Stein F, Weinberg M (2015) A scheilgulliver model dedicated to the solidification of steel. Calphad 48:184–188. doi:10.1016/j.calphad.2015.01.002. http://www.sciencedirect.com/science/article/pii/S0364591615000036

  25. Scheil E (1942) Bemerkungen zur schichtkristallbildung. Zeitschrift fuer Metallkunde 34:70–72

    Google Scholar 

  26. Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2015) Linking process, structure, property, and performance for metal based additive manufacturing: computational approaches with experimental support. Comput Mech. doi:10.1007/s00466-015-1240-4

  27. Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L (2003) Mechanisms of selective laser sintering and heat transfer in ti powder. Rapid Prototyp J 9(5):314–326. doi:10.1108/13552540310502211

    Article  Google Scholar 

  28. Xiong W, Chen Q, Korzhavyi PA, Selleby M (2012) An improved magnetic model for thermodynamic modeling. Calphad 39:11–20. doi:10.1016/j.calphad.2012.07.002. http://www.sciencedirect.com/science/article/pii/S0364591612000612

  29. Xiong W, Du Y, Hu RX, Wang J, Zhang WW, Nash P, Lu XG (2008) Construction of the Al–Ni–Si phase diagram over the whole composition and temperature ranges: thermodynamic modeling supported by key experiments and first-principles calculations. Int J Mater Res 99:598–612. Kolbergerstrasse 22, Munchen, D-81679. doi:10.3139/146.101681

  30. Xiong W, Grönhagen KA, Ågren J, Selleby M, Odqvist J, Chen Q (2011) Investigation of spinodal decomposition in Fe–Cr alloys: CALPHAD modeling and phase field simulation, pp 1060–1065. http://dx.doi.org/10.4028/www.scientific.net/SSP.172-174.1060

  31. Xiong W, Olson GB (2015) Integrated computational materials design for high-performance alloys. MRS Bull 40(12):1035–1044. doi:10.1557/mrs.2015.273. http://www.journals.cambridge.org/abstract_S0883769415002730

  32. Yan W, Smith J, Ge W, Lin F, Liu W (2015) Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech 52:1–12. doi:10.1007/s00466-015-1170-1

    MATH  Google Scholar 

  33. Yin J, Zhu H, Ke L, Hu P, He C, Zhang H, Zeng X (2015) A finite element model of thermal evolution in laser micro sintering. Int J Adv Manuf Technol, pp 1–13. doi:10.1007/s00170-015-7609-x

  34. Zaeh M, Ott M (2011) Investigations on heat regulation of additive manufacturing processes for metal structures. CIRP Ann Manuf Technol 60(1):259–262. doi:10.1016/j.cirp.2011.03.109. http://www.sciencedirect.com/science/article/pii/S0007850611001107

  35. Zäh M, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4(1):15–23. doi:10.1007/s11740-009-0197-6

    Article  Google Scholar 

  36. Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39(9):2237–2245. doi:10.1007/s11661-008-9566-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support for this work provided by National Institute of Standards and Technology (NIST) and Center for Hierarchical Materials Design (CHiMaD) under Grant No. 70NANB13Hl94 and 70NANB14H012. The first author would like to acknowledge the United States Department of Defense for their support through the National Defense Science and Engineering Graduate (NDSEG) fellowship award. Wei Xiong is grateful to the Thermo-Calc software company for providing the license to the software and databases used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J., Xiong, W., Cao, J. et al. Thermodynamically consistent microstructure prediction of additively manufactured materials. Comput Mech 57, 359–370 (2016). https://doi.org/10.1007/s00466-015-1243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1243-1

Keywords

Navigation