Skip to main content
Log in

Homogenization in micro-magneto-mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill–Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. There exist materials that show even higher deformations under applied magnetic field, given by ferromagnetic shape memory alloys (these show strains in the order of a few percent). The governing effects taking place in shape memory alloys are however different from those in pure ferromagnets and will not be considered in the present contribution. For more information see, for example, Kiefer et al. [30].

  2. The magnetostrictive strain for a cubic response in (57) can be explicitly written as,

    $$\begin{aligned} {\varvec{\varepsilon }}_0=\frac{3}{2} \begin{pmatrix} E_{100}(m_1^2-1/3) &{} E_{111}m_1m_2 &{} E_{111}m_1m_3 \\ E_{111}m_2m_1 &{} E_{100}(m_2^2-1/3) &{} E_{111}m_2m_3 \\ E_{111}m_3m_1 &{} E_{111}m_3m_2 &{} E_{100}(m_3^2-1/3) \end{pmatrix} _{CF} \end{aligned}$$

    The material modulus \({\varvec{\mathcal {K}}}\) can be filled with the entries \({\mathcal {K}}_{1111}{=} E_{100}, {\mathcal {K}}_{2222}{=} E_{100}, {\mathcal {K}}_{3333}{=} E_{100}, {\mathcal {K}}_{1212}{=} {\mathcal {K}}_{1221}{=}E_{111}/2, {\mathcal {K}}_{2112}{=} {\mathcal {K}}_{2121}{=}E_{111}/2, {\mathcal {K}}_{1313}= {\mathcal {K}}_{1331}=E_{111}/2, {\mathcal {K}}_{3113}= {\mathcal {K}}_{3131}=E_{111}/2, {\mathcal {K}}_{2323}= {\mathcal {K}}_{2332}=E_{111}/2, {\mathcal {K}}_{3223}= {\mathcal {K}}_{3232}=E_{111}/2\). The fourth order cubic mechanical modulus \({\mathbb {C}}^{cub}\) in (58) is given as

    $$\begin{aligned} {\mathbb {C}}^{cub}= \begin{pmatrix} {\mathbb {C}}_{11} &{} {\mathbb {C}}_{12} &{} {\mathbb {C}}_{12} &{} &{} &{} \\ {\mathbb {C}}_{12} &{} {\mathbb {C}}_{11} &{} {\mathbb {C}}_{12} &{} &{} &{} \\ {\mathbb {C}}_{12} &{} {\mathbb {C}}_{12} &{} {\mathbb {C}}_{11} &{} &{} &{}\\ &{} &{} &{}{\mathbb {C}}_{44} &{} &{}\\ &{} &{} &{} &{}{\mathbb {C}}_{44} &{} \\ &{} &{} &{} &{} &{}{\mathbb {C}}_{44} \end{pmatrix}. \end{aligned}$$

References

  1. Abbundi R, Clark A (1977) Anomalous thermal expansion and magnetostriction of single crystal \({\rm Tb}_{27}{\rm Dy}_{73}{\rm Fe}_2\). Magn IEEE Trans 13(5):1519–1520. doi:10.1109/TMAG.1977.1059598

    Article  Google Scholar 

  2. Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart R, Otero J, Bravo-Castillero J (2005) An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int J Solids Struct 42(21–22):5692–5714. doi:10.1016/j.ijsolstr.2005.03.016

    Article  MATH  Google Scholar 

  3. Bertram HN (1994) Theory of magnetic recording. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Brassart L, Stainier L, Doghri I, Delannay L (2011) A variational formulation for the incremental homogenization of elasto-plastic composites. J Mech Phys Solids 59(12):2455–2475. doi:10.1016/j.jmps.2011.09.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown WF Jr (1966) Magnetoelastic interactions, tracts in natural philosophy, vol 9. Springer-Verlag, New York

    Book  Google Scholar 

  6. Brun M, Lopez-Pamies O, Ponte Castañeda P (2007) Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int J Solids Struct 44:5953–5979

    Article  MathSciNet  MATH  Google Scholar 

  7. Claeyssen F, Lhermet N, Letty RL, Bouchilloux P (1997) Actuators, transducers and motors based on giant magnetostrictive materials. J Alloys Compd 258(1–2):61–73. doi:10.1016/S0925-8388(97)00070-4

    Article  Google Scholar 

  8. Clark AE, Restorff JB, Wun-Fogle M, Hathaway KB, Lograsso TA, Huang M, Summers E (2007) Magnetostriction of ternary fe-ga-x(x=c, v, cr, mn, co, rh) alloys. J Appl Phys 101(9):09C507. doi:10.1063/1.2670376

    Article  Google Scholar 

  9. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading

    Google Scholar 

  10. Daniel L, Hubert O, Billardon R (2004) Homogenisation of magneto-elastic behaviour: from the grain to the macro scale. Comput Appl Math 23:285–308

    Article  MathSciNet  MATH  Google Scholar 

  11. Daniel L, Hubert O, Buiron N, Billardon R (2008) Reversible magneto-elastic behavior: a multiscale approach. J Mech Phys Solids 56(3):1018–1042

    Article  MathSciNet  MATH  Google Scholar 

  12. DeSimone A (1993) Energy minimizers for large ferromagnetic bodies. Arch Ration Mech Anal 125:99–143

    Article  MathSciNet  Google Scholar 

  13. DeSimone A, James R (2002) A constrained theory of magnetoelasticity. J Mech Phys Solids 50:283–320

    Article  MathSciNet  MATH  Google Scholar 

  14. DeSimone A, Kohn RV, Müller S, Otto F (2004) Recent analytical developments in micromagnetics. Technical report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig

  15. Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego

    Google Scholar 

  16. Ethiraj G, Sridhar A, Miehe C (2015) Variational modeling and homogenization in dissipative magneto-mechanics. GAMM-Mitt 38(1):75–101. doi:10.1002/gamm.201510004

    Article  MathSciNet  Google Scholar 

  17. Gilbert TL (1956) Formulation, foundations, and applications of the phenomenological theory of ferromagnetism. Ph.D. thesis, Illinois Institute of Technology

  18. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443–3449

    Article  Google Scholar 

  19. Goll D, Kronmüller H (2000) High-performance permanent magnets. Naturwissenschaften 87(10):423–438

    Article  Google Scholar 

  20. Greaves S (2008) Micromagnetic simulations of magnetic recording media. In: High performance computing on vector systems 2007. Springer, Berlin

  21. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond (Ser A) 326:131–147

    Article  MATH  Google Scholar 

  22. Hirsinger L, Barbier G, Billardon R (2000) Application of the internal variable formalism to the modelling of magneto-elasticity. Mech Electromagn Mater Struct 19:54–67

    Google Scholar 

  23. Hu R, Soh AK, Zheng GP, Ni Y (2006) Micromagnetic modeling studies on the effects of stress on magnetization reversal and dynamic hysteresis. J Magn Magn Mater 301(2):458–468. doi:10.1016/j.jmmm.2005.07.023

    Article  Google Scholar 

  24. Hubert A, Schäfer R (2001) Magnetic domains. Springer-Verlag, New York

    Google Scholar 

  25. James R, Kinderlehrer D (1990) Frustration in ferromagnetic materials. Contin Mech Thermodyn 2:215–239

    Article  MathSciNet  Google Scholar 

  26. Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magnetomechanics. Int J Solids Struct 50:4197–4216

    Article  Google Scholar 

  27. Kankanala S, Triantafyllidis N (2004) On finitely strained magnetorheological elatomers. J Mech Phys Solids 52:2869–2908

    Article  MathSciNet  MATH  Google Scholar 

  28. Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79

    Article  MathSciNet  Google Scholar 

  29. Keip MA, Schrade D, Thai H, Schröder J, Svendsen B, Müller R, Gross D (2015) Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites and polycrystals. GAMM-Mitt 38(1):115–131. doi:10.1002/gamm.201510006

    Article  MathSciNet  Google Scholar 

  30. Kiefer B, Karaca H, Lagoudas D, Karaman I (2007) Characterization and modeling of the magnetic field-induced strain and work output in magnetic shape memory alloys. J Magn Magn Mater 312(1):164–175. doi:10.1016/j.jmmm.2006.09.035

    Article  Google Scholar 

  31. Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21(4):541–583

    Article  Google Scholar 

  32. Kittel C (1956) Introduction to solid state physics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  33. Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Institute of Mechanics of Materials, TU Eindhoven

  34. Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  35. Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550

    Article  MATH  Google Scholar 

  36. Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuznetsov S, Fish J (2012) Mathematical homogenization theory for electroactive continuum. Int J Numer Methods Eng 91(11):1199–1226. doi:10.1002/nme.4311

    Article  MathSciNet  Google Scholar 

  38. Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids 55(9):1932–1963. doi:10.1016/j.jmps.2007.02.003

  39. Landau LD, Lifshitz EM (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153–169

    MATH  Google Scholar 

  40. Landis CM (2008) A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J Mech Phys Solids 56:3059–3076

    Article  MathSciNet  MATH  Google Scholar 

  41. Liang CY, Keller SM, Sepulveda AE, Bur A, Sun WY, Wetzlar K, Carman GP (2014) Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Nanotechnology 25(43):435,701

    Article  Google Scholar 

  42. Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166

    Article  MATH  Google Scholar 

  43. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55:1285–1322

    Article  MathSciNet  MATH  Google Scholar 

  44. Miehe C (2003) Computational micro-to-macro transitions of discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559–591

    Article  MathSciNet  MATH  Google Scholar 

  45. Miehe C (2011) A multi-field incremental variational framework for gradinet-type standard dissipative solids. J Mech Phys Solids 59(4):898–923

    Article  MathSciNet  MATH  Google Scholar 

  46. Miehe C, Dettmar J (2004) A framework for micro-macro transitions in periodic particle aggregates of granular materials. Comput Methods Appl Mech Eng 193:225–256

    Article  MathSciNet  MATH  Google Scholar 

  47. Miehe C, Ethiraj G (2012) A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput Methods Appl Mech Eng 245–246:331–347

    Article  MathSciNet  Google Scholar 

  48. Miehe C, Dettmar J, Zäh D (2010) Homogenization and two-scale simulations of granular materials for different microstructural constraints. Int J Numer Methods Eng 83:1206–1236

    Article  MATH  Google Scholar 

  49. Miehe C, Kiefer B, Rosato D (2011) An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int J Solids Struct 48:1846–1866

    Article  Google Scholar 

  50. Miehe C, Rosato D, Kiefer B (2011) Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int J Numer Methods Eng 86:1225–1276

    Article  MathSciNet  MATH  Google Scholar 

  51. Miehe C, Zäh D, Rosato D (2012) Variational-based modeling of micro-electro-elasticity with electric field- and stress-driven domain evolution. Int J Numer Methods Eng 91(2):115–141

    Article  MATH  Google Scholar 

  52. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. In: North-Holland series in applied mathematics and mechanics, vol. 36, 2nd edn. Elsevier Science Publisher B.V

  53. Olabi A, Grunwald A (2008) Design and application of magnetostrictive materials. Mater Des 29(2):469–483. doi:10.1016/j.matdes.2006.12.016

    Article  Google Scholar 

  54. Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204

    Article  MathSciNet  MATH  Google Scholar 

  55. Pisante G (2004) Homogenization of micromagnetics large bodies. ESAIM: control, optimisation and calculus of variations

  56. Ponte Castañeda P, Galipeau E (2011) Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J Mech Phys Solids 59:194–215

    Article  MathSciNet  MATH  Google Scholar 

  57. Ponte Castañeda P, Siboni M (2012) A finite-strain constitutive theory for electro-active polymer composites via homogenization. Int J Non-Linear Mech 47(2):293–306. doi:10.1016/j.ijnonlinmec.2011.06.012

  58. Ponte Castañeda P, Suquet P (1997) Nonlinear composites. Elsevier, Amsterdam

    Book  MATH  Google Scholar 

  59. Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29(3):2113–2123

    Article  Google Scholar 

  60. Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite terfenol-d. J Appl Phys 75(10):5656–5658. doi:10.1063/1.355627

    Article  Google Scholar 

  61. Schrefl T, Fidler J, Kronmüller H (1994) Remenence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49(9):6100–6110

    Article  Google Scholar 

  62. Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46:595–599

    Article  Google Scholar 

  63. Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244

    Article  MathSciNet  MATH  Google Scholar 

  64. Shu YC, Lin MP, Wu KC (2004) Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech Mater 36(10):975–997 Active Materials

    Article  Google Scholar 

  65. Smith RC, Dapino MJ, Seelecke S (2003) Free energy model for hysteresis in magnetostrictive transducers. J Appl Phys 93(1):458–466

    Article  Google Scholar 

  66. Spaldin NA (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge

    Google Scholar 

  67. Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds.) Lecture Notes in Physics: Homogenization Techniques for Composite Materials, vol. 272 edn. Springer-Verlag, pp 193–278

  68. Temizer I, Wriggers P (2011) Homogenization in finite thermoelasticity. J Mech Phys Solids 59(2):344–372. doi:10.1016/j.jmps.2010.10.004

    Article  MathSciNet  MATH  Google Scholar 

  69. Yi M, Xu BX (2014) A constraint-free phase field model for ferromagnetic domain evolution. Proc R Soc A 470(2171):20140,517. doi:10.1098/rspa.2014.0517

    Article  Google Scholar 

  70. Zäh D, Miehe C (2013) Computational homogenization in dissipative electro-mechanics of functional materials. Comput Methods Appl Mech Eng 267:487–510

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang JX, Chen LQ (2005) Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater 53:2845–2855

    Article  Google Scholar 

  72. Zhang JX, Chen LQ (2005) Phase-field model for ferromagnetic shape-memory alloys. Philos Mag Lett 85:533–541

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for financial support of the projects under the grants Mi 295/71-1 and KE 1849/2-2 within the research unit FOR 1509. M.-A.K. thanks the “Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg” as well as the DFG in the framework of the Cluster of Excellence in “Simulation Technology” (EXC 310/2) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Miehe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, A., Keip, MA. & Miehe, C. Homogenization in micro-magneto-mechanics. Comput Mech 58, 151–169 (2016). https://doi.org/10.1007/s00466-016-1286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1286-y

Keywords

Navigation