Skip to main content
Log in

A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A meshfree approach to the simulation of the large deformation of a curved shell by the reproducing kernel particle method (RKPM) is presented. Since the kinematic description is based on the Mindlin–Reissner shell theory, only one layer of particles is needed to model the shell and the time increment is not limited by the shell thickness. The reproducing interpolation function is adopted to discretize the kinematic quantities of the shell; thus, the spatial discretization is independent of the finite element mesh, so it can address large deformations without mesh distortion. The governing equation of an arbitrary curved shell is derived in detail based on the principle of virtual power, for which reasonable simplifications have been taken. The Lagrangian kernel and stress points are adopted in the calculation, which are sufficient to eliminate instability. Several numerical examples are performed, verifying the reliability and numerical accuracy of the RKPM shell model. No locking is observed in the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  2. Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228:8380–8393

    Article  MathSciNet  MATH  Google Scholar 

  3. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  MATH  Google Scholar 

  4. Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for nonclinear dynamic fracture. Int J Numer Methods Eng 72:524–548

    Article  MATH  Google Scholar 

  5. Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49:2373–2393

    Article  Google Scholar 

  6. Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid–structure interaction. Int J Numer Methods Eng 22:48

    MathSciNet  MATH  Google Scholar 

  7. Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid–structure interaction problems with the SPH method. Comput Struct 87:721–734

    Article  Google Scholar 

  8. Ming FR, Zhang AM, Xue YZ, Wang SP (2016) Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Eng 117:359–382

    Article  Google Scholar 

  9. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  10. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  11. Belytschko T, Lu YY, Gu L (1994) Elementcfree Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  Google Scholar 

  12. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  13. Dilts GA (1999) Movingc-least-squares-particle hydrodynamics—I. Consistency and stability. Int J Numer Methods Eng 44:1115–1155

    Article  MathSciNet  MATH  Google Scholar 

  14. Belytschko T, Lu Y, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570

    Article  MATH  Google Scholar 

  15. Belytschko T, Organ D, Gerlach C (2000) Element-free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng 187:385–399

    Article  MATH  Google Scholar 

  16. Li S, Simonsen CB (2005) Meshfree simulations of ductile crack propagations. Int J Comput Methods Eng Sci Mech 6:1–19

    Article  Google Scholar 

  17. Li S, Hao W, Liu WK (2000) Mesh-free simulations of shear banding in large deformation. Int J Solids Struct 37:7185–7206

    Article  MATH  Google Scholar 

  18. Jun S, Liu WK, Belytschko T (1998) Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Methods Eng 41:137–166

    Article  MATH  Google Scholar 

  19. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  20. Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123–134

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  MATH  Google Scholar 

  22. Randles P, Libersky L (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    Article  MathSciNet  MATH  Google Scholar 

  23. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33:3057–3080

    Article  MATH  Google Scholar 

  24. Donning BM, Liu WK (1998) Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152:47–71

    Article  MATH  Google Scholar 

  25. Chen JS, Wang D (2006) A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int J Numer Methods Eng 68:151–172

    Article  MATH  Google Scholar 

  26. Maurel B, Combescure A (2008) An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Methods Eng 76:949–971

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225:253–275

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin J, Naceur H, Coutellier D, Laksimi A (2014) Geometrically nonlinear analysis of thin-walled structures using efficient Shell-based SPH method. Comput Mater Sci 85:127–133

    Article  Google Scholar 

  29. Caleyron F, Combescure A, Faucher V, Potapov S (2012) Dynamic simulation of damage–fracture transition in smoothed particles hydrodynamics shells. Int J Numer Methods Eng 90:707–738

    Article  MathSciNet  MATH  Google Scholar 

  30. Günther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163:205–230

    Article  MathSciNet  MATH  Google Scholar 

  31. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25:102–116

    Article  MATH  Google Scholar 

  32. Hughes TJ, Liu WK (1981) Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26:331–362

    Article  MATH  Google Scholar 

  33. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703

    Article  MathSciNet  MATH  Google Scholar 

  34. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    MATH  Google Scholar 

  35. Benson D, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MathSciNet  MATH  Google Scholar 

  36. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  37. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  38. Gosz J, Liu WK (1996) Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput Mech 19:120–135

    Article  MATH  Google Scholar 

  39. Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155:273–305

    Article  MathSciNet  MATH  Google Scholar 

  40. Owen DR, Hinton E (1980) Finite elements in plasticity: theory and practice. UK, Pineridge Press

  41. Swaddiwudhipong S, Liu Z (1996) Dynamic response of large strain elasto-plastic plate and shell structures. Thin-Walled Struct 26:223–239

    Article  Google Scholar 

  42. Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JS (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Methods Appl Mech Eng 51:221–258

    Article  MathSciNet  MATH  Google Scholar 

  43. Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92

    Article  MATH  Google Scholar 

  44. Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26

Download references

Acknowledgements

The authors appreciate the help of Prof. Shaofan Li from University of California Berkeley for his guidance and instructions. And the authors thank the State Key Program of National Natural Science of China (U1430236) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y.X., Zhang, A.M. & Ming, F.R. A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis. Comput Mech 62, 309–321 (2018). https://doi.org/10.1007/s00466-017-1498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1498-9

Keywords

Navigation