Skip to main content

Advertisement

Log in

PAX2 in human kidney malformations and disease

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Human PAX2 mutations have been associated with abnormalities in the developing and adult kidney ranging from congenital abnormalities of the kidney and urinary tract (CAKUT) to oncogenic processes. Defining the relationship of PAX2 to human renal disease requires an appreciation of its fundamental role in renal development. Given the highly conserved nature of the PAX2 gene in vertebrates, it is not surprising that much of our understanding of PAX2 involvement in renal disease has been derived from animal models. The following review will outline the current evidence supporting involvement of PAX2 in the pathologic processes involving the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    PubMed  CAS  Google Scholar 

  2. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 93:13870–13875

    Article  PubMed  CAS  Google Scholar 

  3. Saxen L (1987) Organogenesis of the kidney. In: Barlow PW, Green PB, White CC (eds) Developmental and cell biology series, 19th edn. Cambridge University Press, Cambridge, pp 1–173

    Google Scholar 

  4. Dressler GR, Douglass EC (1992) Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 89:1179–1183

    Article  PubMed  CAS  Google Scholar 

  5. Dressler GR (1996) Pax-2, kidney development, and oncogenesis. Med Pediatr Oncol 5:440–444, Review

    Article  Google Scholar 

  6. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    PubMed  CAS  Google Scholar 

  7. Eccles MR, Wallis LJ, Fidler AE, Spurr NK, Goodfellow PJ, Reeve AE (1992) Expression of the PAX2 gene in human fetal kidney and Wilms tumour. Cell Growth Diff 3:279–289

    PubMed  CAS  Google Scholar 

  8. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    PubMed  CAS  Google Scholar 

  9. Imgrund M, Gröne E, Gröne HJ, Kretzler M, Holzman L, Schlöndorff D, Rothenpieler UW (1999) Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int 56:1423–1431

    Article  PubMed  CAS  Google Scholar 

  10. Dressler GR (2008) Epigenetics, development, and the kidney. J Am Soc Nephrol 11:2060–2067, Review

    Article  Google Scholar 

  11. Dressler GR (2011) Patterning and early cell lineage decisions in the developing kidney: the role of Pax genes. Pediatr Nephrol 26(9):1387–1394

    Article  PubMed  Google Scholar 

  12. Woroniecki R, Gaikwad AB, Susztak K (2011) Fetal environment, epigenetics, and pediatric renal disease. Pediatr Nephrol 5:705–711, Review

    Article  Google Scholar 

  13. Dressler GR, Woolf AS (1999) Pax2 in development and renal disease. Int J Dev Biol 43:463–468, Review

    PubMed  CAS  Google Scholar 

  14. McEnery PT, Stablein DM, Arbus G, Tejani A (1992) Renal transplantation in children. N Engl J Med 326:1727–1732

    Article  PubMed  CAS  Google Scholar 

  15. Negrisolo S, Benetti E, Centi S, Vella MD, Ghirardo G, Zanon G, Murer L, Artifoni L (2010) PAX2 gene mutations in pediatric and young adult transplant recipients: kidney and urinary tract malformations without ocular anomalies. Clin Genet. doi:10.1111/j.1399-0004.2010.01588.x

  16. Burger RH, Smith C (1971) Hereditary and familial vesicoureteral reflux. J Urol 106:845–851

    PubMed  CAS  Google Scholar 

  17. Mak RH, Kuo HJ (2003) Primary ureteral reflux: emerging insights from molecular and genetic studies. Curr Opin Pediatr 15:181–185

    Article  PubMed  Google Scholar 

  18. Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114:274–280

    PubMed  CAS  Google Scholar 

  19. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and ret. Nat Genet 32:109–115

    Article  PubMed  CAS  Google Scholar 

  20. Murawski IJ, Myburgh DB, Favor J, Gupta IR (2007) Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am J Physiol Renal Physiol 293:F1736–F1745

    Article  PubMed  CAS  Google Scholar 

  21. Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009

    Article  PubMed  Google Scholar 

  22. Porteous S, Torban E, Cho N-P, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11

    Article  PubMed  CAS  Google Scholar 

  23. Weber S, Moriniere V, Knüppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiené A, Mir S, Montini G, Peco-Antic A, Wühl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  PubMed  CAS  Google Scholar 

  24. Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26:897–903

    Article  PubMed  Google Scholar 

  25. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921

    Article  PubMed  CAS  Google Scholar 

  26. Eccles MM (1998) The role of PAX2 in normal and abnormal development of the urinary tract. Pediatr Nephrol 12:712–720, Review

    Article  PubMed  CAS  Google Scholar 

  27. Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS (1996) The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest 98:451–459

    Article  PubMed  CAS  Google Scholar 

  28. Woolf AS, Winyard PJ (2000) Gene expression and cell turnover in human renal dysplasia. Histol Histopathol 15:159–166, Review

    PubMed  CAS  Google Scholar 

  29. Woolf AS (2000) A molecular and genetic view of human renal and urinary tract malformations. Kidney Int 58:500–512

    Article  PubMed  CAS  Google Scholar 

  30. Ostrom L, Tang MJ, Gruss P, Dressler GR (2000) Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Dev Biol 219:250–258

    Article  PubMed  CAS  Google Scholar 

  31. Stayner C, Iglesias DM, Goodyer PR, Ellis L, Germino G, Zhou J, Eccles MR (2006) Pax2 gene dosage influences cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 15:3520–3528

    Article  PubMed  CAS  Google Scholar 

  32. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont MEM, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nature Genet 9:358–364

    Article  PubMed  CAS  Google Scholar 

  33. Schimmenti LA, Pierpont ME, Carpenter BLM, Kashtan CE, Johnson MR, Dobyns WB (1995) Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies. Am J Med Genet 59:204–208

    Article  PubMed  CAS  Google Scholar 

  34. Dureau P, Attie-Bitach T, Salomon R, Bettembourg O, Amiel J, Uteza Y, Dufier JL (2001) Renal coloboma syndrome. Ophthalmology 108:1912–1916

    Article  PubMed  CAS  Google Scholar 

  35. Clark P, D’ziarmaga A, Eccles M, Goodyer P (2004) Rescue of defective branching nephrogenesis in renal-coloboma syndrome by the caspase inhibitor, Z-VAD-fmk. J Am Soc Nephrol 15:299–305

    Article  PubMed  CAS  Google Scholar 

  36. Eccles MR, Schimmenti LA (1999) Renal-coloboma syndrome: a multisystem developmental disorder caused by PAX2 mutations. Clin Genet 56:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Schimmenti LA, Manligas GS, Sieving PA (2003) Optic nerve dysplasia and renal insufficiency in a family with a novel PAX2 mutation, Arg115X: further ophthalmologic delineation of the renal-coloboma syndrome. Ophthalmic Genet 24:191–202

    Article  PubMed  Google Scholar 

  38. Nornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109:797–809

    PubMed  CAS  Google Scholar 

  39. Schimmenti LA (2009) Genetic and developmental basis of renal coloboma (papillorenal) syndrome. Expert Rev Ophthalmol 4:135–144

    Article  CAS  Google Scholar 

  40. Schimmenti LA, Shim HH, Wirtschafter JD, Panzarino VA, Kashtan C, Kirkpatrick SJ, Wargowski DS, France TD, Michel E, Dobyns WB (1999) Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal-coloboma syndrome. Hum Mutat 14:369–376

    Article  PubMed  CAS  Google Scholar 

  41. Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M, Juppner H, Alexander SI (2005) Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 16:2754–2761

    Article  PubMed  CAS  Google Scholar 

  42. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, Dureau P, Niaudet P, Gubler MC, Broyer M (2001) PAX2 mutations in oligomeganephronia. Kidney Int 59:457–462

    Article  PubMed  CAS  Google Scholar 

  43. Schimmenti LA (2011) Renal coloboma syndrome. Eur J Hum Genet. doi:10.1038/ejhg.2011.102

  44. Drash A, Sherman F, Hartmann W, Blizzard RMA (1970) A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr 76:585–593

    Article  PubMed  CAS  Google Scholar 

  45. Habib R, Loirat C, Gubler MC, Niaudet P, Bensman A, Levy M, Broyer M (1985) The nephropathy associated with male pseudohermaphroditism and Wilms’ tumor (Drash syndrome): a distinctive glomerular lesion—report of 10 cases. Clin Nephrol 24:269–278

    PubMed  CAS  Google Scholar 

  46. Baird PN, Santos A, Groves N, Jadresic L, Cowell JK (1992) Constitutional mutations in the WT1 gene in patients with Denys–Drash syndrome. Hum Mol Genet 1:301–305

    Article  PubMed  CAS  Google Scholar 

  47. Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE (1991) WT1 mutations contribute to abnormal genital system development and hereditary Wilms tumour. Nature 353:431–434

    Article  PubMed  CAS  Google Scholar 

  48. Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, Miyagawa K, Christie S, Doig J, Harrison DJ, Porteous DJ, Brookes AJ, Hooper ML, Hastie ND (1999) A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys–Drash syndrome. Proc Natl Acad Sci USA 96:2931–2936

    Article  PubMed  CAS  Google Scholar 

  49. Yang Y, Jeanpierre C, Dressler GR, Lacoste M, Niaudet P, Gubler M-C (1999) WT1 and PAX-2 podocyte expression in Denys–Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol 154:181–192

    Article  PubMed  CAS  Google Scholar 

  50. Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, Mullins J, Hastie ND, Hooper ML (2003) Murine Denys–Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 12:2379–2394

    Article  PubMed  CAS  Google Scholar 

  51. Frasier SD, Bashore RA, Mosier HD (1964) Gonadoblastoma associated with pure gonadal dysgenesis in monozygotic twins. J Pediatr 64:740–745

    Article  PubMed  CAS  Google Scholar 

  52. Moorthy AV, Chesney RW, Lubinsky M (1987) Chronic renal failure and XY gonadal dysgenesis: “Frasier” syndrome—a commentary on reported cases. Am J Med Genet 3:297–302

    Article  CAS  Google Scholar 

  53. Barbaux S, Niaudet P, Gubler MC, Grunfeld J-P, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470

    Article  PubMed  CAS  Google Scholar 

  54. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, Gessler M (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet 7:709–714

    Article  PubMed  CAS  Google Scholar 

  55. Mucha B, Ozaltin F, Hinkes BG, Hasselbacher K, Ruf RG, Schultheiss M, Hangan D, Hoskins BE, Everding AS, Bogdanovic R, Seeman T, Hoppe B, Hildebrandt F (2006) Members of the APN Study Group. Mutations in the Wilms’ tumor 1 gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. Pediatr Res 59:325–331

    Article  PubMed  CAS  Google Scholar 

  56. Habib R, Gubler MC, Antignac C, Gagnadoux MF (1993) Diffuse mesangial sclerosis: a congenital glomerulopathy with nephrotic syndrome. Adv Nephrol 22:43–56

    CAS  Google Scholar 

  57. Mrowka C, Schedl A (2000) Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol 11:S106–S115

    PubMed  CAS  Google Scholar 

  58. Villanueva S, Céspedes C, Vio CP (2006) Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am J Physiol Regul Integr Comp Physiol 290:R861–R870

    Article  PubMed  CAS  Google Scholar 

  59. Zhang SL, Guo J, Moini B, Ingelfinger JR (2004) Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int 66:2181–2192

    Article  PubMed  CAS  Google Scholar 

  60. Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465

    Article  PubMed  CAS  Google Scholar 

  61. Cai Q, Dmitrieva NI, Ferraris JD, Brooks HL, van Balkom BWM, Burg M (2005) Pax2 expression occurs in renal medullary epithelial cells in vivo and in cell culture, is osmoregulated, and promotes osmotic tolerance. Proc Natl Acad Sci USA 102:503–508

    Article  PubMed  CAS  Google Scholar 

  62. Cohen T, Loutochin O, Amin M, Capolicchio JP, Goodyer P, Jednak R (2007) PAX2 is reactivated in urinary tract obstruction and partially protects collecting duct cells from programmed cell death. Am J Physiol Renal Physiol 292:F1267–F1273

    Article  PubMed  CAS  Google Scholar 

  63. Lindoso RS, Verdoorn KS, Einicker-Lamas M (2009) Renal recovery after injury: the role of Pax-2. Nephrol Dial Transplant 24:2628–2633

    Article  PubMed  CAS  Google Scholar 

  64. Grande JP (1997) Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 214:27–40

    PubMed  CAS  Google Scholar 

  65. Maeshima A, Nojima Y, Kojima I (2002) Activin A: An autocrine regulator of cell growth and differentiation in renal proximal tubular cells. Kidney Int 62:446–454

    Article  PubMed  CAS  Google Scholar 

  66. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247:836–838

    Article  PubMed  CAS  Google Scholar 

  67. Liu S, Cieslinski DA, Funke AJ, Humes HD (1997) Transforming growth factor-beta-1 regulates the expression of Pax-2, a developmental control gene, in renal tubule cells. Exp Nephrol 5:295–300

    PubMed  CAS  Google Scholar 

  68. Wagner KD, Wagner N, Guo JK, Elger M, Dallman MJ, Bugeon L, Schedl A (2006) An inducible mouse model for PAX2-dependent glomerular disease: insights into a complex pathogenesis. Curr Biol 16:793–800

    Article  PubMed  CAS  Google Scholar 

  69. Davis JL, Matsumura L, Weeks DA, Troxell ML (2011) PAX2 expression in Wilms tumors and other childhood neoplasms. Am J Surg Pathol 35:1186–1194

    Article  PubMed  Google Scholar 

  70. Gnarra JR, Dressler GR (1995) Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Cancer Res 55:4092–4098

    PubMed  CAS  Google Scholar 

  71. Maulbecker CC, Gruss P (1993) The oncogenic potential of Pax genes. EMBO J 12:2361–2367

    PubMed  CAS  Google Scholar 

  72. Menke A, McInnes L, Hastie ND, Schedl A (1998) The Wilms’ tumor suppressor WT1: approaches to gene function. Kidney Int 53:1512–1518, Review

    Article  PubMed  CAS  Google Scholar 

  73. Eccles MR, Yun K, Reeve AE, Fidler AE (1995) Comparative in situ hybridization analysis of PAX2, PAX8, and WT1 gene transcription in human fetal kidney and Wilms tumours. Am J Pathol 146:40–45

    PubMed  CAS  Google Scholar 

  74. Fonsato V, Buttilgieri S, Deregibus MC, Puntorieri V, Bussolati B, Camussi G (2006) Expression of Pax2 in human renal tumor-derived endothelial cells sustains apoptosis resistance and angiogenesis. Am J Pathol 168:706–713

    Article  PubMed  CAS  Google Scholar 

  75. Daniel L, Lechevallier E, Giorgi R, Sichez H, Zattara-Cannoni H, Figarella-Branger D, Coulange C (2001) Pax-2 expression in adult renal tumors. Hum Pathol 32:282–287

    Article  PubMed  CAS  Google Scholar 

  76. Ozcan A, Zhai Q, Javed R, Shen SS, Coffey D, Krishnan B, Truong LD (2010) PAX2 is a helpful marker for diagnosing metastatic renal cell carcinoma: comparison with the renal cell carcinoma marker antigen and kidney-specific cadherin. Arch Pathol Lab Med 134:1121–1129

    PubMed  Google Scholar 

  77. Truong LD, Shen SS (2011) Immunohistochemical diagnosis of renal neoplasms. Arch Pathol Lab Med 135:92–109

    PubMed  Google Scholar 

  78. Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438:981–987

    Article  PubMed  CAS  Google Scholar 

  79. Esteller M (2008) Epigenetic changes in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  80. Mack GS (2006) Epigenetic cancer therapy makes headway. J Natl Cancer Inst 98:1443–1444

    Article  PubMed  Google Scholar 

  81. Müller CI, Rüter B, Koeffler HP, Lübbert M (2006) DNA hypermethylation of myeloid cells, a novel therapeutic target in MDS and AML. Curr Pharm Biotechnol 7:315–321

    Article  PubMed  Google Scholar 

  82. Oki Y, Aoki E, Issa JP (2007) Decitabine—bedside to bench. Crit Rev Oncol Hematol 6:140–152

    Article  Google Scholar 

  83. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  PubMed  CAS  Google Scholar 

  84. Rothenpieler UW, Dressler GR (1993) Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119(3):711–720

    PubMed  CAS  Google Scholar 

  85. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    PubMed  CAS  Google Scholar 

  86. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    PubMed  CAS  Google Scholar 

  87. Clarke JC, Patel SR, Raymond RM Jr, Andrew S, Robinson BG, Dressler GR, Brophy PD (2006) Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Hum Mol Genet 15:3420–3428

    Article  PubMed  CAS  Google Scholar 

  88. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  89. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  PubMed  CAS  Google Scholar 

  90. Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, Eccles M, Discenza M, Pelletier J, Goodyer P (2006) PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem 281:12705–12712

    Article  PubMed  CAS  Google Scholar 

  91. Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874

    Article  PubMed  CAS  Google Scholar 

  92. Woolf AS, Winyard PJD (2002) Molecular mechanisms of human embryogenesis: developmental pathogenesis of renal tract malformations. Pediatr Dev Pathol 5:108–129

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Brophy.

Additional information

Answers

1. d) A and B

2. d) S-shaped body, proximal 1/3

3. e.) None of the above

4. d.) A and B

5. f.) All of the above

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harshman, L.A., Brophy, P.D. PAX2 in human kidney malformations and disease. Pediatr Nephrol 27, 1265–1275 (2012). https://doi.org/10.1007/s00467-011-2053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-2053-0

Keywords

Navigation