Skip to main content

Advertisement

Log in

Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Although hyperfiltration and albuminuria are common pathological conditions, kidney injury (KI) biomarkers have been seldom studied in individuals with sickle cell anemia (SCA).

Methods

We undertook a cross-sectional assessment of urine KI biomarkers in children and adults with SCA with and without albuminuria and a normal estimated glomerular filtration rate (eGFR). Albumin, KI molecule 1 (KIM-1), N-acetyl-ß-D-glucosaminidase (NAG), endothelin-1 and transforming growth factor-β1 (TGF-β1) were measured. Assays were normalized by urine creatinine. Urine intracellular hemosiderin and serum lactate dehydrogenase (LDH) were assessed as markers of hemolysis. Albuminuria was associated to the biomarkers by Pearson and Spearman correlation coefficients. Differences between the albuminuria (yes, no) groups were assessed by the t test.

Results

Nineteen patients with albuminuria (mean urine albumin/creatinine 527.14 ± 1070 mg/g, range 38.3-–190 mg/g) and 19 patients without albuminuria (mean urine albumin/creatinine 15.93 ± 5.17 mg/g, range 7.9–28.4 mg/g) were studied. The age range for the whole group was 11–48 years, and 47 % were males. Patients with albuminuria were older, had lower hematocrit, were more likely to test positive for urine hemosiderin and had a higher KIM-1 (P = 0.0035) and NAG/ creatinine ratios (P = 0.0062). Urine hemosiderin strongly correlated to a higher LDH level (P < 0.001).

Conclusions

Despite a normal or increased eGFR, KI biomarkers were detected in the urine of individuals with SCA. NAG, KIM-1 and urine hemosiderin correlated with the presence of albuminuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunn HF (1997) Pathogenesis and treatment of sickle cell disease. N Engl J Med 337:762–769

    Article  PubMed  CAS  Google Scholar 

  2. Kaul DK, Hebbel RP (2000) Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 106:411–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Osarogiagbon UR, Choong S, Belcher JD, Vercellotti GM, Paller MS, Hebbel RP (2000) Reperfusion injury pathophysiology in sickle transgenic mice. Blood 96:314–320

    PubMed  CAS  Google Scholar 

  4. Nath KA, Katusic ZS (2012) Vasculature and kidney complications in sickle cell disease. J Am Soc Nephrol 23:781–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Scheinman JI (2009) Sickle cell disease and the kidney. Nat Clin Pract Nephrol 5:78–88

    Article  PubMed  Google Scholar 

  6. Powars DR, Elliot-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, Johnson C (1991) Chronic renal failure in sickle cell disease: Risk factors, clinical course, and mortality. Ann Intern Med 115:614–620

    Article  PubMed  CAS  Google Scholar 

  7. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. N Engl J Med 330:1639–1644

    Article  PubMed  CAS  Google Scholar 

  8. Becker AM (2011) Sickle cell nephropathy: Challenging the conventional wisdom. Pediatr Nephrol 26:2099–2109

    Article  PubMed  Google Scholar 

  9. Sharpe CC, Thein SL (2011) Sickle cell nephropathy – a practical approach. Br J Haematol 155:287–297

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez O, Zilleruelo G, Wright D, Montane B, Lopez-Mitnik G (2006) Serum cystatin C levels in children with sickle cell disease. Pediatr Nephrol 21:533–537

    Article  PubMed  Google Scholar 

  11. Alvarez O, Montane B, Lopez G, Wilkinson J, Miller T (2006) Early blood transfusions protect against microalbuminuria in children with sickle cell disease. Pediatr Blood Cancer 47:71–76

    Article  PubMed  Google Scholar 

  12. Guasch A, Navarrete J, Nass K, Zayas CF (2006) Glomerular involvement in adults with sickle cell hemoglobinopathies: Prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol 17:2228–2235

    Article  PubMed  CAS  Google Scholar 

  13. Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E, Akhter SA, Raman J, Jeevanandam V, O'Connor MF, Devarajan P, Bonventre JV, Murray PT (2010) Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol 5:2154–2165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder DJ, Bobadilla NA, Marrer E, Perentes E, Codier A, Vonderscher J, Maurer G, Goering PL, Sistare FD, Bonventre JV (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F (2010) Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 28:436–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hoffmann D, Adler M, Vaidya VS, Rached E, Mulrane L, Gallagher WM, Callanan JJ, Gautier JC, Matheis K, Staedtler F, Dieterle F, Brandenburg A, Sposny A, Hewitt P, Ellinger-Ziegelbauer H, Bonventre JV, Dekant W, Mally A (2010) Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol Sci 116:8–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Devarajan P (2008) Emerging urinary biomarkers in the diagnosis of acute kidney injury. Expert Opin Med Diagn 2:387–398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Devarajan P (2010) Review: Neutrophil gelatinase-associated lipocalin: A troponin-like biomarker for human acute kidney injury. Nephrology 15:419–428

    Article  PubMed  Google Scholar 

  19. Sundaram N, Bennett M, Wilhelm J, Kim MO, Atweh G, Devarajan P, Malik P (2011) Biomarkers for early detection of sickle nephropathy. Am J Hematol 86:559–566

    Article  PubMed  CAS  Google Scholar 

  20. Voskaridou E, Terpos E, Michail S, Hantzi E, Anagnostopoulos A, Margeli A, Simirloglou D, Loukopoulos D, Papassotiriou I (2006) Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia. Kidney Int 69:2037–2042

    Article  PubMed  CAS  Google Scholar 

  21. Mohtat D, Thomas R, Du Z, Boakye Y, Moulton T, Driscoll C, Woroniecki R (2011) Urinary transforming growth factor beta-1 as a marker of renal dysfunction in sickle cell disease. Pediatr Nephrol 26:275–280

    Article  PubMed  Google Scholar 

  22. Nauta FL, Boertien WE, Bakker SJ, van Goor H, van Oeveren W, de Jong PE, Bilo H, Gansevoort RT (2011) Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 34:975–981

    Article  PubMed  PubMed Central  Google Scholar 

  23. Devarajan P (2011) Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr 23:194–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Tharaux PL, Hagège I, Placier S, Vayssairat M, Kanfer A, Girot R, Dussaule JC (2005) Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol Dial Transplant 20:2408–2413

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. J Am Soc Nephrol 4:1832–1843

    Article  Google Scholar 

  27. Chronic Kidney Disease Epidemiology Collaboration, Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F (2006) Using standardized serum creatinine values in the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  PubMed  CAS  Google Scholar 

  28. Filler G, Foster J, Acker A, Lepage N, Akbari A, Ehrich JH (2005) The Cockcroft-Gault formula should not be used in children. Kidney Int 67:2321–2324

    Article  PubMed  Google Scholar 

  29. Chaturvedi S, Farmer T, Kapke GF (2009) Assay validation for KIM-1: human urinary renal dysfunction biomarker. Int J Biol Sci 5:128–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Palmer LS, Maizels M, Kaplan WE, Firlit CF, Cheng EY (1997) Urine levels of transforming growth factor-beta 1 in children with uretero-pelvic junction obstruction. Urology 50:769–773

    Article  PubMed  CAS  Google Scholar 

  31. Henry JB (2001) Clinical diagnosis and management by laboratory methods, 20th edn. W.B. Saunders, Philadelphia

  32. Zamboni P, Izzo M, Fogato L, Carandina S, Lanzara V (2003) Urine hemosiderin: a novel marker to assess the severity of chronic venous disease. J Vasc Surg 37:132–136

    Article  PubMed  Google Scholar 

  33. Ashley-Koch AE, Okocha EC, Garrett ME, Soldano K, De Castro LM, Jonassaint JC, Orringer EP, Eckman JR, Telen MJ (2011) MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br J Haematol 155:386–394

    Article  PubMed  CAS  Google Scholar 

  34. Sklar AH, Campbell H, Caruana RJ, Lightfoot BO, Gaier JG, Milner P (1990) A population study of renal function in sickle cell anemia. Int J Artif Organs 13:231–236

    PubMed  CAS  Google Scholar 

  35. Montgomery R, Zibari G, Hill G, Ratner LE (1994) Renal transplantation in patients with sickle cell nephropathy. Transplantation 58:618–620

    Article  PubMed  CAS  Google Scholar 

  36. Ataga KI, Orringer EP (2000) Renal abnormalities in sickle cell disease. Am J Hematol 63:205–211

    Article  PubMed  CAS  Google Scholar 

  37. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  PubMed  CAS  Google Scholar 

  38. Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children: a meta-analysis. Clin Biochem 40:383–391

    Article  PubMed  CAS  Google Scholar 

  39. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, Rossert J, Van Lente F, Bruce RD 3rd, Zhang YL, Greene T, Levey AS (2008) Estimated GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3418 individuals with CKD. Am J Kidney Dis 51:395–406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Alvarez O, Lopez-Mitnik G, Zilleruelo G (2008) Short-term follow-up of patients with sickle cell disease and albuminuria. Pediatr Blood Cancer 50:1236–1239

    Article  PubMed  Google Scholar 

  41. Abbate M, Benigni A, Bertani T, Remuzzi G (1999) Nephrotoxicity of increased glomerular protein traffic. Nephrol Dial Transplant 14:304–312

    Article  PubMed  CAS  Google Scholar 

  42. Honkanen E, Teppo AM, Tornroth T, Groop PH, Grönhagen-Riska C (1997) Urinary transforming growth factor-βl in membranous glomerulonephritis. Nephrol Dial Transplant 12:2562–2568

    Article  PubMed  CAS  Google Scholar 

  43. Lüscher TF (1991) Endothelin. J Cardiovasc Pharmacol 18:S15–S22

    Article  PubMed  Google Scholar 

  44. Simonson MS, Ismail-Beigi F (2011) Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop. J Biol Chem 286:11003–11008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47

    Article  PubMed  PubMed Central  Google Scholar 

  46. Becton LJ, Kalpatthi RV, Rackoff E, Disco D, Orak JK, Jackson SM, Shatat IF (2010) Prevalence and clinical correlates of microalbuminuria in children with sickle cell disease. Pediatr Nephrol 25:1505–1511

    Article  PubMed  Google Scholar 

  47. Gurkan S, Scarponi KJ, Hotchkiss H, Savage B, Drachtman R (2010) Lactate dehydrogenase as a predictor of kidney involvement in patients with sickle cell anemia. Pediatr Nephrol 25:2123–2127

    Article  PubMed  Google Scholar 

  48. Schein A, Enriquez C, Coates TD, Wood JC (2008) Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging 28:698–704

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the kind support of Dr. Lanetta Jordan who provided funding to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamideh, D., Raj, V., Harrington, T. et al. Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia. Pediatr Nephrol 29, 1997–2003 (2014). https://doi.org/10.1007/s00467-014-2821-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2821-8

Keywords

Navigation