Skip to main content
Log in

Biomechanics of a branch – stem junction in softwood

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Direct measurement of strain field in a mechanically loaded Norway spruce branch–stem junction was performed by means of electronic speckle pattern analysis. Results were compared with strain distribution in a polyester cast of identical shape as the branch–stem junction, and a simplified polyester model consisting of two half-cylinders. Compared to polyester models, the branch–stem junction was characterised by a very homogeneous distribution of strain, which can be interpreted as a homogeneous distribution of stress in terms of fraction of material strength. This optimised transfer of mechanical load from the branch to the stem is achieved by a combination of naturally optimised shape with, additionally, optimised mechanical wood properties in the junction area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Dantec–Ettemeyer (2001) ISTRA for Windows, Version 3.3.12. Dantec Ettemeyer GmbH, Ulm, Germany

    Google Scholar 

  • Dumail JF, Kenneth O, Salmén L (2000) An analysis of rolling shear of spruce wood by the iosipescu method. Holzforschung 54:420–426

    Article  CAS  Google Scholar 

  • Eberhardsteiner J (1995) Biaxial testing of orthotropic materials using electronic speckle pattern interferometry. Measurement 16:139–148

    Article  Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz—Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, Wien New York

    Google Scholar 

  • Färber J, Lichtenegger HC, Reiterer A, Stanzl-Tschegg S, Fratzl P (2001) Cellulose microfibril angles in a spruce branch and mechnical implications. J Mater Sci 36:5087–5092

    Article  Google Scholar 

  • Fournier M, Bordonne PA, Guitard D (1990) Growth stress patterns in tree stems. Wood Sci Technol 24:131–142

    Article  Google Scholar 

  • Gindl W, Sretenovic A, Vincenti A, Müller U (2005) Direct measurement of strain distribution along a wood bond line—Part II: Effects of adhesive penetration on strain distribution. Holzforschung 59:307–310

    Article  CAS  Google Scholar 

  • Kollmann FP, Coté WA (1968) Principles of wood science and technology. I: Solid wood. Springer-Verlag, New York Inc

    Google Scholar 

  • Mattheck C (1991) Trees – the mechanical design. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Mattheck C, Breloer H (1994) Handbuch der Schadenskunde von Bäumen – der Baumbruch in Mechanik und Rechtsprechung. Rombach Verlag, Freiburg

    Google Scholar 

  • Mattheck C, Kubler H (1997) Wood – the internal optimization of trees. Springer-Verlag, Berlin Heidelberg, New York

    Google Scholar 

  • Mattheck C (1998) Design in nature – learning from trees. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Mohan NK, Rastogi P (2003) Recent developments in digital speckle pattern interferometry. Opt Lasers Eng 40(5/6):439–445

    Article  Google Scholar 

  • Müller U, Sretenovic A, Vincenti A, Gindl W (2005) Direct measurement of strain distribution along a wood bond line – Part I: Shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung 59:300–306

    Article  CAS  Google Scholar 

  • Rastogi PK (2001) Measurement of static surface displacements, derivatives of displacements, and three-dimensional surface shapes – examples of applications to non-destructive testing. In: Rastogi PK (ed) Digital speckle pattern interferometry and related techniques. John Wiley & Sons, pp 141–224

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79(9):2173–2184

    Article  CAS  Google Scholar 

  • Reuschel JD (1999) Untersuchungen der Faserandordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode. Dissertation, Forschungszentrum Karlsruhe GmbH, Karlsruhe

  • Salmen L, DeRuvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336–350

    CAS  Google Scholar 

  • Shigo AL (1985) How tree branches are attached to trunks. Can J Bot 63:1391–1401

    Article  Google Scholar 

  • Shigo AL (1990) A new tree biology. Thalacker, Braunschweig

    Google Scholar 

  • Siebert T, El-Ratal W, Wegner R, Ettemeyer A (2002) Combine simulation and experiment in automotive testing with ESPI measurement. Exp Tech May/June:42–47

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Google Scholar 

  • Trendelenburg R (1955) Das Holz als Rohstoff. Carl Hanser Verlag, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Müller.

Additional information

Communicated by T. Speck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U., Gindl, W. & Jeronimidis, G. Biomechanics of a branch – stem junction in softwood. Trees 20, 643–648 (2006). https://doi.org/10.1007/s00468-006-0079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-006-0079-x

Keywords

Navigation