Skip to main content
Log in

A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The thermal dissipation technique is widely used to estimate transpiration of individual trees and forest stands, but there are conflicting reports regarding its accuracy. We compared the rate of water uptake by stems of six tree species in potometers with sap flow (F S) estimates derived from thermal dissipation sensors to evaluate the accuracy of the technique. To include the full range of xylem anatomies (i.e., diffuse-porous, ring-porous, and tracheid), we used saplings of sweetgum (Liquidambar styraciflua), eastern cottonwood (Populus deltoides), white oak (Quercus alba), American elm (Ulmus americana), shortleaf pine (Pinus echinata), and loblolly pine (Pinus taeda). In almost all instances, estimated F S deviated substantially from actual F S, with the discrepancy in cumulative F S ranging from 9 to 55%. The thermal dissipation technique generally underestimated F S. There were a number of potential causes of these errors, including species characteristics and probe construction and installation. Species with the same xylem anatomy generally did not show similar relationships between estimated and actual F S, and the largest errors were in species with diffuse-porous (Populus deltoides, 34%) and tracheid (Pinus taeda, 55%) xylem anatomies, rather than ring-porous species Quercus alba (9%) and Ulmus americana (15%) as we had predicted. New species-specific α and β parameter values only modestly improved the accuracy of F S estimates. However, the relationship between the estimated and actual F S was linear in all cases and a simple calibration based on the slope of this relationship reduced the error to 1–4% in five of the species, and to 8% in Liquidambar styraciflua. Our calibration approach compensated simultaneously for variation in species characteristics and sensor construction and use. We conclude that species-specific calibrations can substantially increase the accuracy of the thermal dissipation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida AC, Soares JV, Landsberg JJ, Rezende GD (2007) Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manage 251:10–21

    Article  Google Scholar 

  • Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K (1998) Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia 115:463–471

    Article  Google Scholar 

  • Braun P, Schmid J (1999) Sap flow measurements in grapevines (Vitis vinifera L.)-2. Granier measurements. Plant Soil 215:47–55

    Article  CAS  Google Scholar 

  • Bush SE, Hultine KR, Sperry JS, Ehleringer JR (2010) Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees. Tree Physiol 30:1545–1554

    Article  PubMed  Google Scholar 

  • Čermák J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15:171–178

    Article  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytol 169:549–559

    Article  PubMed  Google Scholar 

  • Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol 19:681–687

    PubMed  Google Scholar 

  • Do F, Rocheteau A (2002) Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies. Tree Physiol 22:641–648

    Article  PubMed  CAS  Google Scholar 

  • Do FC, Rocheteau A, Diagne AL, Goudiaby V, Granier A, Lhomme JP (2008) Stable annual pattern of water use by Acacia tortilis in Sahelian Africa. Tree Physiol 28:95–104

    Article  PubMed  Google Scholar 

  • Duursma RA, Kolari P, Peramaki M, Nikinmaa E, Hari P, Delzon S, Loustau D, Ilvesniemi H, Pumpanen J, Makela A (2008) Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiol 28:265–276

    Article  PubMed  CAS  Google Scholar 

  • Ewers BE, Oren R (2000) Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol 20:579–589

    PubMed  Google Scholar 

  • Fiora A, Cescatti A (2006) Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree Physiol 26:1217–1225

    Article  PubMed  Google Scholar 

  • Granier A (1985) A new method of sap flow measurement in tree stems. Ann Sci For 42:193–200

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements. Tree Physiol 3:309–319

    PubMed  Google Scholar 

  • Granier A, Bobay V, Gash JHC, Gelpe J, Saugier B, Shuttleworth WJ (1990) Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest. Agric For Meteorol 51:309–319

    Article  Google Scholar 

  • Gutiérrez MV, Santiago LS (2006) A comparison of sap flow measurements and potometry in two tropical lowland tree species with contrasting wood properties. Rev Biol Trop 54:73–81

    PubMed  Google Scholar 

  • Herbst M, Roberts JM, Rosier PTW, Taylor ME, Gowing DJ (2007) Edge effects and forest water use: a field study in a mixed deciduous woodland. For Ecol Manage 250:176–186

    Article  Google Scholar 

  • Hogg EH, Black TA, den Hartog G, Neumann HH, Zimmermann R, Hurdle PA, Blanken PD, Nesic Z, Yang PC, Staebler RM, McDonald KC, Oren R (1997) A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous forest. J Geophys Res Atmospheres 102:28929–28937

    Article  CAS  Google Scholar 

  • Hubbard RM, Stape J, Ryan MG, Almeida AC, Rojas J (2010) Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. For Ecol Manage 259:1714–1721

    Article  Google Scholar 

  • Huber B, Schmidt E (1937) Eine Kompensationsmethode zur thermo-elektrische Messung lagsamer Saftströme. Ber Dtsch Bot Ges 55:514–529

    Google Scholar 

  • Iida S, Tanaka T (2010) Effect of the span length of Granier-type thermal dissipation probes on sap flux density measurements. Ann For Sci 67(480):1–10

    Google Scholar 

  • James SA, Clearwater MJ, Meinzer FC, Goldstein G (2002) Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiol 22:277–283

    Article  PubMed  Google Scholar 

  • Kume T, Onozawa Y, Komatsu H, Tsuruta K, Shinohara Y, Umebayashi T, Otsuki K (2010) Stand-scale transpiration estimates in a Moso bamboo forest: (I) applicability of sap flux measurements. For Ecol Manage 260:1287–1294

    Article  Google Scholar 

  • Liu HJ, Cohen S, Tanny J, Lemcoff JH, Huang GH (2008) Transpiration estimation of banana (Musa sp.) plants with the thermal dissipation method. Plant Soil 308:227–238

    Article  CAS  Google Scholar 

  • Lu P, Chacko E (1998) Evaluation of Granier’s sap flux sensor in young mango trees. Agronomie 18:461–471

    Article  Google Scholar 

  • Lu P, Woo KC, Liu ZT (2002) Estimation of whole-plant transpiration of bananas using sap flow measurements. J Exp Bot 53:1771–1779

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Urban L, Zhao P (2004) Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot Sin 46:631–646

    Google Scholar 

  • Lundblad M, Lagergren F, Lindroth A (2001) Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Ann For Sci 58:625–638

    Article  Google Scholar 

  • Marshall DC (1958) Measurement of sap flow in conifers by heat transport. Plant Physiol 33:385–396

    Article  PubMed  CAS  Google Scholar 

  • McCulloh KA, Winter K, Meinzer FC, Garcia M, Aranda J, Lachenbruch B (2007) A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Tree Physiol 27:1355–1360

    Article  PubMed  Google Scholar 

  • Nadezhdina N, Čermák J, Nadezhdin V (1998) Heat field deformation method for sap flow measurements. In: Čermák J, Nadezhdina N (eds) Measuring sap flow in intact plants. Proceedings of 4th International Workshop, Židlochovice, Czech Republic, IUFRO Publ. Mendel University, Brno, Czech Republic, pp 72–92

    Google Scholar 

  • Oliveras I, Llorens P (2001) Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes. Tree Physiol 21:473–480

    Article  PubMed  CAS  Google Scholar 

  • Phillips NG, Lewis JD, Logan BA, Tissue DT (2010) Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiol 30:586–596

    Article  PubMed  Google Scholar 

  • Regalado CM, Ritter A (2007) An alternative method to estimate zero flow temperature differences for Granier’s thermal dissipation technique. Tree Physiol 27:1093–1102

    Article  PubMed  Google Scholar 

  • Reis FD, Campostrini E, de Sousa EF, Silva MGE (2006) Sap flow in papaya plants: laboratory calibrations and relationships with gas exchanges under field conditions. Sci Hortic 110:254–259

    Article  Google Scholar 

  • Renninger H, Phillips N (2010) Wet- vs. dry-season transpiration in an Amazonian rain forest palm Iriartea deltoidea. Biotropica 42:470–478

    Article  Google Scholar 

  • Samuelson LJ, Farris MG, Stokes TA, Coleman MD (2008) Fertilization but not irrigation influences hydraulic traits in plantation-grown loblolly pine. For Ecol Manage 255:3331–3339

    Article  Google Scholar 

  • Saugier B, Granier A, Pontailler JY, Dufrene E, Baldocchi DD (1997) Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiol 17:511–519

    PubMed  Google Scholar 

  • Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Exp Bot 47:1833–1844

    Article  CAS  Google Scholar 

  • Steppe K, De Pauw DJW, Doody TM, Teskey RO (2010) A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric For Meteorol 150:1046–1056

    Article  Google Scholar 

  • Swanson RH, Whitfield DWA (1981) A numerical analysis of heat pulse velocity theory and practice. J Exp Bot 32:221–239

    Article  Google Scholar 

  • Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168

    Article  Google Scholar 

  • Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in trees. Tree Physiol 18:499–512

    PubMed  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a USDA McIntire-Stennis grant to ROT, a grant from the Scholarship Council and the Fundamental Research Funds for the Central Universities (DL09CA18), China to HZS. We thank M. Marsh, S. Pettis for access to facilities and C. Ford, B. McCollum for instruction on constructing sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhen Sun.

Additional information

Communicated by E. Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Aubrey, D.P. & Teskey, R.O. A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees 26, 631–640 (2012). https://doi.org/10.1007/s00468-011-0631-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0631-1

Keywords

Navigation