Skip to main content

Advertisement

Log in

Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A global increase in temperature could potentially increase the trees’ growth at high altitude and decrease at low altitude. Another immediate consequence would be an increase of the altitude threshold where the inversion of tree growth response to temperature occurs.

Abstract

The first network of 18 tree-ring chronologies of Norway spruce (Picea abies) from the Eastern Carpathians (Romania) was studied in relation to the climatic factors and regional patterns in tree growth responses to climate. The sites are distributed along a latitudinal and altitudinal transect. The tree growth reaction to climate variability was analyzed by means of response functions. We used redundancy analysis (RDA) to identify regional patterns in the climatic response. The Norway spruce diameter growth patterns in Eastern Carpathians from Romania correspond to different climatic responses according to three elevation levels: low (≤1000 m a.s.l.); intermediate (1000–1300 m a.s.l.); high (≥1300 m a.s.l.). At high altitudinal level tree growth is strongly limited by summer temperatures. This climatic signal progressively decreases with decreasing altitude and increasing mean temperature. Tree growth at low elevation sites is controlled mainly by summer precipitations and in the intermediate elevation sites there is not any statistically significant correlation with climatic variables. At elevations of 1000–1100 m a.s.l., at a mean temperature of 13–13.5 °C in June and 15.5–16 °C in July, further increases in mean temperature result in an inversion of the relationship between tree-ring growth and temperature (i.e., the response becomes negative). A global increase in temperature could potentially increase the trees’ growth at high altitude and decrease at low altitude. Another immediate consequence would be an increase of the altitude threshold where the inversion of tree growth response to temperature occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrundan IV, Marinescu V, Ionescu O, Ioras F, Horodnic SA, Sestras R (2009) Developments in the Romanian forestry and its linkages with other sectors. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2):14–21

    Google Scholar 

  • Andreassen K, Solberg S, Tveito OE, Lystad SL (2006) Regional differences in climatic responses of Norway spruce growth in Norway. For Ecol Manage 222:211–221

    Article  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    Article  CAS  PubMed  Google Scholar 

  • Barnes BV, Wagner WH (2004) Michigan Trees: a guide to the trees of the Great Lakes region. University of Michigan Press, Ann Arbor, p 439

    Google Scholar 

  • Barry RG (1992) Mountain climatology and past and potential future climatic changes in mountain regions: a review. Mt Res Dev 12:71–86

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Article  Google Scholar 

  • Bouriaud O, Popa I (2007) Site and species influence on tree growth response to climate in Vrancea Mountains. Proc Rom Acad 9(1):63–72

    Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of Dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis (IIASA). Kluwer Academic Publishers, Dordrecht, pp 137–152

  • Bunn AG, Waggoner LA, Graumlich LJ (2005) Topographic mediation of growth in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests on the Sierra Nevada. USA Glob Ecol Biogeogr 14:103–114

    Article  Google Scholar 

  • Buntgen U, Frank D, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110

    Article  Google Scholar 

  • Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Cejkova A, Kolar T (2009) Extreme radial growth reaction of Norway spruce along an altitudinal gradient in the Sumava Mountains. Geochronometria 33:41–47

    Article  Google Scholar 

  • Churakova Sidorova OV, Eugster W, Zielis S, Cherubini P, Etzold S, Saurer M, Siegwolf R, Buchmann N (2014) Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s. Trees 28:183–191

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, p 394

    Book  Google Scholar 

  • Cook ER, Krusic PJ (2006) ArstanWin 4.1.b_XP. http://www.ideo.columbia.edu

  • D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory Canada. Glob Biogeochem Cycle 18:GB3021. doi:10.1029/2004GB002249

    Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather responses of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees 17:477–484

    Article  Google Scholar 

  • Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhaengigkeit von Witterung und Hoehenlage. Forstwissenschaftliches Centralblatt 118:251–270

    Article  Google Scholar 

  • Donită I, Ivan D, Sanda V, Popescu A (1992) Romanian vegetation. Agricultural Technical Publishing, Bucharest 407 pp

    Google Scholar 

  • Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25(11):1437–1454

    Article  Google Scholar 

  • Friedrichs DA, Buntgen U, Frank DC, Esper J, Neuwirth B, Loffler J (2009) Complex climate controls on 20th century oak growth in central-west Germany. Tree Physiol 29:39–51

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree Rings and Climate. Academic Press, pp 567

  • Gaul D, Hertel D, Leuschner C (2008) Effects of experimental soil frost on the fine-root system of mature Norway spruce. J Plant Nutr Soil Sci 171:690–698

    Article  CAS  Google Scholar 

  • Grissino-Mayer HD (2001) Assessing crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  • Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133(4):486–491

    Article  Google Scholar 

  • Helle G, Schleser H (2004) Beyond CO2-fixation by Rubisco - an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    Article  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bulletin 43:69–75

    Google Scholar 

  • Ichim R (1990) Ecological management of the Norway spruce forests. Ceres Publishing Bucharest, Bucharest, p 186

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Nat Acad Sci 94:7362–7366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth response to the 2003 heat wave in the Swiss Alps. Geophys res Lett 32(18):L18409

    Article  Google Scholar 

  • Kern Z, Popa I (2007) Climate–growth relationship of tree species from a mixed stand of Apuseni Mts., Romania. Dendrochronologia 24(2–3):109–115

    Article  Google Scholar 

  • Knapp PA, Soule PT, Grissino-Mayer HD (2001) Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Glob Change Biol 7:903–917

    Article  Google Scholar 

  • Koprowski M (2013) Spatial distribution of introduced Norway spruce growth in lowland Poland: the influence of changing climate and extreme weather events. Quatern Int 283:139–146

    Article  Google Scholar 

  • Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR (2007) Tree ring-growth variability in the Austrian Alps: the influence of site altitude, tree species and climate. Boreas 36:426–440

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2 English edn. Elsevier Science BV, Amsterdam, p 853

    Google Scholar 

  • Levanic T, Gricar J, Gagen M, Jalkanen R, Loader NJ, McCarrol D, Oven P, Robertson I (2009) The climate sensitivity of Norway spruce in the southeastern European Alps. Trees 23:169–180

    Article  Google Scholar 

  • Lingg W (1986) Dendrookologische Studien an Nadelbaumen im alpinen Trockental Wallis (Schweiz). Eidg Anst forstl VersWes 287:1–81

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509

    Article  Google Scholar 

  • Makinen H, Nojd P, Kahle HP, Neumann U, Tveite B, Mielikainen K, Rohle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259

    Article  Google Scholar 

  • Makinen H, Nojd P, Kahle HP, Neumann U, Tveite B, Mielikainen K, Rohle H, Spiecker H (2003) Large-scale climatic variation and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Peterson DW, Peterson DL, Ettl GJ (2002) Growth responses of subalpine fir to climatic variability in the Pacific Northwest. Can J For Res 32:1503–1517

    Article  Google Scholar 

  • Popa I (2003) Comparative analysis of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) dendroclimatological response in the northern Eastern Carpathians. Bucovina. Forestry 11(2):3–14

    Google Scholar 

  • Popa I (2005) Historical reconstruction of the thermal dynamics regime of June in Rodna Mountains. For J 4:21–28

    Google Scholar 

  • Poynton S, Mitchell A, Ionascu G, Mc Kinnenn F, Elliott J, Abrudan IV (2000) Economic evaluation and reform of the Romanian forestry sector. Editura Pentru viata, Brasov

    Google Scholar 

  • Rinntech (2005) TSAP User reference, pp 110

  • Rossi S, Deslauriers A, Gričar J, Seo JW, Rathgeber C, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:699–707

    Article  Google Scholar 

  • Rosu A (1980) Romanian Geography. Didactic and Pedagogical Publishing, Bucharest 484 pp

    Google Scholar 

  • Rybníček M, Čermák P, Žid T, Kolář T (2010) Radial growth and health condition of Norway spruce (Picea abies (l.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36:9–16

    Google Scholar 

  • Sandu I, Poiană I, Pescaru V (eds) (2008) Romanian climate. Romanian Academy Publishing, Bucharest, p 365

    Google Scholar 

  • Savva Y, Oleksyn J, Reich P, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20:735–746

    Article  Google Scholar 

  • Sidor C (2011) The relationship between climate and radial growth of trees from upper mountain area. Editura Silvică, pp 196

  • Sidor C, Popa I (2007) Comparative analysis of Norway spruce, silver fir and Scots pine dendroclimatological response in the Curvature Carpathians. For J 3:3–8

    Google Scholar 

  • Skrøppa T (2003) EUFORGEN Technical Guidelines for genetic conservation and use for Norway spruce (Picea abies). International Plant Genetic Resources Institute, Roma 6 pp

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, p 110

    Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206

    Article  Google Scholar 

  • Tardif J, Camarero J, Ribas M, Gutierrez E (2003) Spatiotemporal variability in tree growth in the central Pyrenees: climatic and site influences. Ecol Monogr 73(2):241–257

    Article  Google Scholar 

  • Ter Braak CJF, Prentice IC (1988) A theory on gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Tessier L, Guibal F, Schweingruber FH (1997) Research strategies in dendroecology and dendroclimatology in mountain environments. Clim Change 36(3–4):499–517

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline: tree existence at high altitudes with special reference to the European Alps. Springer-Verlag, Berlin, p 137

    Book  Google Scholar 

  • Van Oldenborgh G, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(15). doi: 10.1029/2005GL023110

  • Villalba R, Veblen TT, Ogden J (1994) Climatic influence on the growth of subalpine trees in the Colorado front range. Ecology 75:1450–1462

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736

    Article  Google Scholar 

  • Wilson RJ, Hopfmueller M (2001) Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest. Ger Dendrochronol 19(1):67–79

    Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author contribution statement

Cristian Gheorghe SIDOR and Ionel POPA conceived the ideas, collected the data, analyzed the data and wrote the paper. Radu VLAD and Paolo CHERUBINI contributed to the data analyses and to the writing of the paper.

Acknowledgments

The work was supported by CNCS-UEFISCDI project number PN-II-RU-TE-2011-3-0040. We are grateful to Silvia Dingwall for editing and revising the usage of English language.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Gheorghe Sidor.

Additional information

Communicated by E. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidor, C.G., Popa, I., Vlad, R. et al. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees 29, 985–997 (2015). https://doi.org/10.1007/s00468-015-1178-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1178-3

Keywords

Navigation