Skip to main content
Log in

Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Culturing axillary shoot explants of willow in liquid medium in plantform™ and RITA ® vessels increased the multiplication coefficient relative to that obtained by culturing the explants in semisolid medium in jars.

Abstract

A protocol for micropropagating willow by multiplying axillary shoots in liquid medium was developed, and the effects of the type of explant, medium composition, bioreactor type and frequency of immersion were investigated. The type of explant influenced shoot quality and the multiplication coefficient, with basal segments showing a higher capacity for proliferation than apical and mid-shoot segments. Hyperhydricity was not observed in shoots cultured with Murashige and Skoog medium with half-strength nitrates and supplemented with 0.22 µM BA and 3% sucrose. The willow shoots cultured in plantform™ and RITA® vessels yielded higher multiplication coefficients than shoots grown in semisolid medium. High proliferation rates were obtained by immersion of shoots for 1 min three or six times a day, with additional aeration of 1 min per hour in the plantform™ bioreactors. Transfer to medium with 1% sucrose after 4 weeks of culture in medium with 3% sucrose increased the multiplication coefficient of basal segments cultured in RITA® vessels, suggesting that the species could be micropropagated under photoautotrophic conditions. The willow shoots rooted spontaneously and were successfully acclimatized to greenhouse conditions. This is the first report of the use of a temporary immersion system to culture Salix viminalis. The study findings indicate the feasibility of the system as a method for the large-scale propagation of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult 117:65–76. doi:10.1007/s11240-013-0421-0

    Article  CAS  Google Scholar 

  • Amo-Marco JB, Lledo MD (1996) In vitro propagation of Salix tarraconensis Pau ex Font Quer, an endemic and threatened plant. In Vitro Cell Dev Biol Plant 32:42–46. doi:10.1007/BF02823012

    Article  Google Scholar 

  • Aragón CE, Escalona M, Capote I, Pina D, Cejas I, Rodríguez R, Cañal MJ, Sandoval J, Roels S, Debergh P, González-Olmedo JL (2005) Photosynthesis and carbon metabolism in plantain (Musa AAB) growing in temporary immersion bioreactor (TIB) and ex vitro acclimatization. In Vitro Cell Dev Biol Plant 41:550–554. doi:10.1079/IVP2005640

    Article  Google Scholar 

  • Arigita L, González A, Sánchez Tamés R (2002) Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol Plant 115:166–173. doi:10.1034/j.1399-3054.2002.1150119.x

    Article  CAS  PubMed  Google Scholar 

  • Barker AV (1999) Foliar ammonium accumulation as an index of stress in plants. Commun Soil Sci Plant Anal 30:167–174. doi:10.1080/00103629909370193

    Article  CAS  Google Scholar 

  • Bergman L, von Arnold S, Eriksson T (1985) Effects of N6 benzyladenine on shoots of five willow clones (Salix spp.) cultured in vitro. Plant Cell Tissue Organ Cult 4:135–144. doi:10.1007/BF00042271

    Article  Google Scholar 

  • Bhojwani SS (1980) Micropropagation method for a hybrid willow (Salix matsudana × alba NZ-1002). N Z J Bot 18:209–214. doi:10.1080/0028825X.1980.10426919

    Article  Google Scholar 

  • Brand MH (1993) Agar and ammonium nitrate influence hyperhydricity, tissue nitrate and total nitrogen content of serviceberry (Amelanchier arborea) shoots in vitro. Plant Cell Tissue Organ Cult 35:203–209. doi:10.1007/BF00037271

    Article  CAS  Google Scholar 

  • Caboni E, Frattarelli A, Giorgioni M, Meneghini M, Damiano C (2009) Improving micropropagation of hazelnut Italian cultivars through temporary immersion system. Acta Hortic 845:255–260. doi:10.17660/ActaHortic.2009.845.36

    Article  CAS  Google Scholar 

  • Chakrabarty D, Hahn EJ, Yoon YS, Paek KY (2003) Micropropagation of apple root stock ‘M9 EMLA’ using bioreactor. J Hortic Sci Biotechnol 78:605–609. doi:10.1080/14620316.2003.11511671

    Article  CAS  Google Scholar 

  • Chalupa V (1983) In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol Plant 25:305–307. doi:10.1007/BF02902879

    Article  Google Scholar 

  • Daguin F, Letouze R (1986) Ammonium-induced vitrification in cultured tissues. Physiol Plant 66:94–98. doi:10.1111/j.1399-3054.1986.tb01239.x

    Article  CAS  Google Scholar 

  • Debnath SC (2009) A scale-up system for lowbush blueberry micropropagation using a bioreactor. Hort Sci 44:1962–1966

    Google Scholar 

  • Escalona M, Lorenzo JC, González B, Daquinta M, Borroto CG, González JL, Desjardins Y (1999) Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748. doi:10.1007/s002990050653

    Article  CAS  Google Scholar 

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Dev Biol Plant 39:651–656. doi:10.1079/IVP2003473

    Article  CAS  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231. doi:10.1023/A:1015668610465

    Article  Google Scholar 

  • Feito I, González A, Centeno ML, Fernández B, Rodríguez A (2001) Transport and distribution of benzyladenine in Actinidia deliciosa explants cultured in liquid and solid media. Plant Physiol Biochem 39:909–916. doi:10.1016/S0981-9428(01)01309-2

    Article  CAS  Google Scholar 

  • Fujiwara K, Kira S, Kozai T (1992) Time course of CO2 exchange of potato cultures in vitro with different sucrose concentrations in the culture medium. J Agric Meteorol 48:49–56

    Article  Google Scholar 

  • García-Ramírez Y, Gonzáles MG, Mendoza EQ, Freire-Seijo M, Cárdenas MLO, Moreno-Bermúdez LJ, Ribalta OH (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci 5:205–211. doi:10.4236/ajps.2014.52027

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170. doi:10.1007/BF00387721

    Article  CAS  PubMed  Google Scholar 

  • Hassankhah A, Vahdati K, Lotfi M, Mirmasoumi M, Preece J, Assareh M-H (2014) Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated Persian walnut plants. Int J Hortic Sci Technol 1:111–120

    CAS  Google Scholar 

  • Jackson MB (2005) Aeration stress in plant tissue cultures. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 459–473

    Chapter  Google Scholar 

  • Junttila O (1991) Gibberellins and the regulation of shoot elongation in woody plants. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer-Verlag, New York, pp 673–679

    Google Scholar 

  • Khan M, Anis M (2012) Modulation of in vitro morphogenesis in nodal segments of Salix tetrasperma Roxb. through the use of TDZ, different media types and culture regimes. Agrofor Syst 86:95–103. doi:10.1007/s10457-012-9512-x

    Article  Google Scholar 

  • Khan M, Ahmad N, Anis M (2011) The role of cytokinins on in vitro shoot production in Salix tetrasperma Roxb.: a tree of ecological importance. Trees 25:577–584. doi:10.1007/s00468-010-0534-6

    Article  Google Scholar 

  • Kozai T (1991) Photoautotrophic micropropagation. In vitro Cell Dev Biol Plant 27P:47–51. doi:10.1007/BF02632127

    Article  Google Scholar 

  • Kozai T, Kubota C (2005) In vitro aerial environments and their effects on growth and development of plants. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Dordrecht, pp 31–52

    Chapter  Google Scholar 

  • Li G, Li B, Dong G, Feng X, Kronzucker HJ, Shi W (2013) Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis. J Exp Bot 64:1413–1425. doi:10.1093/jxb/ert019

    Article  CAS  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot-tip culture. Proc Inter Plant Propagators Soc 30:421–437

    Google Scholar 

  • Lorenzo JC, Gonzalez BL, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200. doi:10.1023/A:1006168700556

    Article  CAS  Google Scholar 

  • Lucchesini M, Mensuali-Sodi A, Massai R, Gucci R (2001) Development of autotrophy and tolerance to acclimatization of Myrtus communis transplants cultured in vitro under different aeration. Biol Plant 44:167–174. doi:10.1023/A:1010277403705

    Article  Google Scholar 

  • Luna CV, Gonzalez AM, Mroginski LA, Sansberro PA (2017) Anatomical and histological features of Ilex paraguariensis leaves under different in vitro shoot culture systems. Plant Cell Tissue Organ Cult 129:457–467. doi:10.1007/s11240-017-1191-x

    Article  Google Scholar 

  • Lyyra S, Lima A, Merkle SA (2006) In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol 26:969–975. doi:10.1093/treephys/26.7.969

    Article  CAS  PubMed  Google Scholar 

  • Mashkina OS, Tabatskaya TM, Gorobets AI, Shestibratov KA (2010) Method of clonal micropropagation of different willow species and hybrids. Appl Biochem Microbiol 46:769–775. doi:10.1134/S0003683810080065

    Article  CAS  Google Scholar 

  • McAlister B, Finnie J, Watt MP, Blakeway F (2005) Use of temporary immersion system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult 81:347–358. doi:10.1007/s11240-004-6658-x

    Article  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34:1410–1418. doi:10.1016/j.biombioe.2010.04.012

    Article  CAS  Google Scholar 

  • Moncaleán P, Cañal MJ, Fernández H, Fernández B, Rodríguez A (2003) Nutritional and gibberellic acid requirements in kiwifruit vitroponic cultures. In Vitro Cell Dev Biol Plant 39:49–55. doi:10.1079/IVP2002371

    Article  Google Scholar 

  • Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457. doi:10.1007/s11627-008-9173-7

    Article  CAS  Google Scholar 

  • Moreno RJ, Morales AV, Daquinta M, Gómez L (2012) Towards scaling-up the micropropagation of Juglans major (Torrey) Heller var. 209 × J. regia L., a hybrid walnut of commercial interest. Proceedings of the IUFRO Working Party 2.09.02 conference “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management”. Czech Republic, Brno, pp 80–91

    Google Scholar 

  • Morini S, Melai M (2003) CO2 dynamics and growth in photoautotrophic and photomixotrophic apple cultures. Biol Plant 47:167–172. doi:10.1023/B:BIOP.0000022246.09161.63

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murch SJ, Chunzhao L, Romero RM, Saxena PK (2004) In vitro culture and temporary immersion bioreactor production of Crescentia cujete. Plant Cell Tissue Org Cult 78:36–68. doi:10.1023/B:TICU.0000020397.01895.3e

    Article  Google Scholar 

  • Palomo-Ríos E, Macalpine E, Shield I, Amey J, Karaoğlu C, West J, Hanley S, Krygier R, Karp A, Jones HD (2015) Efficient method for rapid multiplication of clean and healthy willow clones via in vitro propagation with broad genotype applicability. Can J For Res 45:1662–1667. doi:10.1139/cjfr-2015-0055

    Article  Google Scholar 

  • Park SY, Kim YW, Moon HK, Murthy HN, Choi YH, Cho HM (2008) Micropropagation of Salix pseudolasiogyne from nodal explants. Plant Cell Tissue Organ Cult 93:341–346. doi:10.1007/s11240-008-9362-4

    Article  Google Scholar 

  • Pérez-Alonso N, Wilken D, Gerth A, Annett J, Nitzsche HM, Kerns G, Capote-Perez A, Jimenez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion system. Plant Cell Tissue Organ Cult 99:151–156. doi:10.1007/s11240-009-9587-x

    Article  Google Scholar 

  • Petrova M, Zayova E, Todorova M, Stanilova M (2014) Enhancement of Arnica montana in vitro shoot multiplication and sesquiterpene lactones production using temporary immersion system. IJPSR 5:5170–5176. doi:10.13040/IJPSR.0975-8232.5(12).5170-76

    Google Scholar 

  • Quiala E, Barbón R, Jiménez E, de Feria M, Chávez M, Capote A, Pérez N (2006) Biomass production of Cymbopogon citratus (D.C.) Stapf, a medicinal plant, in temporary immersion system. In Vitro Cell Dev Biol Plant 42:298–300. doi:10.1079/IVP2006765

    Article  Google Scholar 

  • Quiala E, Cañal MJ, Meijón M, Rodriguez R, Chavéz M, Valledon L, Feria M, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109:223–234. doi:10.1007/s11240-011-0088-3

    Article  CAS  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154–160. doi:10.1007/s11627-015-9735-4

    Article  Google Scholar 

  • Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. Ex Andrews) using a temporary immersion system. In Vitro Cell Dev Biol Plant 50:576–581. doi:10.1007/s11627-014-9602-8

    Article  Google Scholar 

  • Read PE, Garton S, Tormala T (1989) Willows (Salix spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: trees II, vol 5. Springer Verlag, Berlin, pp 370–386

    Google Scholar 

  • Roels S, Escalona M, Cejas I, Noceda C, Rodríguez R, Cañal M, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Org Cult 82:57–66. doi:10.1007/s11240-004-6746-y

    Article  CAS  Google Scholar 

  • Sáez P, Bravo L, Latsague M, Sanchez-Olate M, Ríos D (2012) Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci Hortic 130:7–16. doi:10.1016/j.scienta.2012.02.005

    Article  Google Scholar 

  • Saldanha CW, Otoni CG, Azevedo JLF, Dias LLC, Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Org Cult 110:413–422. doi:10.1007/s11240-012-0162-5

    Article  CAS  Google Scholar 

  • Sansberro PA, Mroginski LA, Bottini R (2001) In vitro morphogenetic responses of Ilex paraguariensis nodal segments treated with different gibberellins and Prohexadione-Ca. Plant Growth Regul 34:209–214. doi:10.1023/A:1013391403061

    Article  CAS  Google Scholar 

  • Skálová D, Navrátilová B, Richterová L, Knitl M, Sochor M, Vašut RJ (2012) Biotechnological methods of in vitro propagation in willows (Salix spp.) Cent Eur. J Biol 7:931–940. doi:10.2478/s11535-012-0069-5

    Google Scholar 

  • Touceda-González M, Álvarez-López V, Prieto-Fernández A, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS (2017) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag 186:301–313. doi:10.1016/j.jenvman.2016.09.019

    Article  Google Scholar 

  • Towill LE, Widrlechner M (2004) Cryopreservation of Salix species using sections from winter vegetative scions. CryoLett 25:71–80

    Google Scholar 

  • Vidal N, Blanco B, Cuenca B (2015a) A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tissue Org Cult 123:229–243. doi:10.1007/s11240-015-0827-y

    Article  CAS  Google Scholar 

  • Vidal N, Correa B, Rial E, Regueira M, Sánchez C, Cuenca B (2015b) Comparison of temporary and continuous immersion systems for micropropagation of axillary shoots of chestnut and willow. Acta Hortic 1083:227–233. doi:10.17660/ActaHortic.2015.1083.27

    Article  Google Scholar 

  • Vieitez AM, Ballester A, San Jose MC, Vieitez E (1985) Anatomical and chemical studies on vitrified shoots of chestnut regenerated in vitro. Physiol Plant 65:177–184. doi:10.1111/j.1399-3054.1985.tb02379.x

    Article  CAS  Google Scholar 

  • Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227–232. doi:10.1016/j.scienta.2014.09.035

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. doi:10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158. doi:10.1007/s11240-010-9863-9

    Article  CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2005) Optimisation of growing conditions for the apple rootstock M26 grown in RITA®containers using temporary immersion principle. Plant Cell Tissue Organ Cult 81:313–318. doi:10.1007/s11240-004-6659-9

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this article to the memory of our dear colleague and friend, Brais Bogo Graña, who died before this research was completed. We thank Estiben Becerra, Alejandro Díaz, Rafael Sánchez and Patricia Val for technical assistance. This research was partially funded by the Xunta de Galicia (Spain) through the Contrato Programa 2014–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Vidal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Merkle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regueira, M., Rial, E., Blanco, B. et al. Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32, 61–71 (2018). https://doi.org/10.1007/s00468-017-1611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1611-x

Keywords

Navigation