Skip to main content
Log in

Predicting seasonal and hydro-meteorological impact in environmental variables modelling via Kalman filtering

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study focuses on the potential improvement of environmental variables modelling by using linear state-space models, as an improvement of the linear regression model, and by incorporating a constructed hydro-meteorological covariate. The Kalman filter predictors allow to obtain accurate predictions of calibration factors for both seasonal and hydro-meteorological components. This methodology can be used to analyze the water quality behaviour by minimizing the effect of the hydrological conditions. This idea is illustrated based on a rather extended data set relative to the River Ave basin (Portugal) that consists mainly of monthly measurements of dissolved oxygen concentration in a network of water quality monitoring sites. The hydro-meteorological factor is constructed for each monitoring site based on monthly precipitation estimates obtained by means of a rain gauge network associated with stochastic interpolation (kriging). A linear state-space model is fitted for each homogeneous group (obtained by clustering techniques) of water monitoring sites. The adjustment of linear state-space models is performed by using distribution-free estimators developed in a separate section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alpuim T, El-Shaarawi A (2009) Modeling monthly temperature data in Lisbon and Prague. Environmetrics 20:835–852

    Article  Google Scholar 

  • Anagnostou EN, Krajewski WF, Seo DJ, Johnson ER (1998) Mean-field rainfall bias studies for WSR-88D. J Hydrol Eng 28:27–39

    Google Scholar 

  • Ato AF, Samuel O, Oscar YD, Moi PA (2010) Mining and heavy metal pollution: assessment of aquatic environments in Tarkwa (Ghana) using multivariate statistical analysis. J Environ Stat 1:1–13

    Google Scholar 

  • Bengtsson T, Cavanaugh JE (2008) State-space discrimination and clustering of atmospheric time series data based on Kullback information measures. Environmetrics 19:103–121

    Article  Google Scholar 

  • Ciach GJ, Krajewski WF (2006) Analysis and modeling of spatial correlation structure of small-scale rainfall in Central Oklahoma. Adv Water Resour 29:1450–1463

    Article  Google Scholar 

  • Charles SP, Bates BC, Smith IN, Hughes JP (2004) Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrol Process 18:1373–1394

    Article  Google Scholar 

  • Chokmani K, Ouarda TBMJ (2004) Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour Res 40:1–13

    Article  Google Scholar 

  • Cressie NAC (1989) The many faces of spatial prediction. In Armstrong M (ed) Geostatistics vol 1. Kluwer, Dordrecht, pp 163–176

  • Costa M, Alpuim T (2010) Parameter estimation of state space models for univariate observations. J Stat Plan Inference 140:1889–1902

    Article  Google Scholar 

  • Costa M, Alpuim T (2011) Adjustment of state space models in view of area rainfall estimation. Environmetrics 22:530–540

    Article  Google Scholar 

  • Costa M, Gonçalves AM (2011) Clustering and forecasting of dissolved oxygen concentration on a river basin. Stoch Environ Res Risk Assess 25:151–163

    Article  Google Scholar 

  • De Marsily G (1986) Quantitative hydrogeology. Academic Press, London, pp 440

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall data. J Hydrol 208:187–193

    Article  Google Scholar 

  • Elhatip H, Hinis MA, G lbahar N (2008) Evaluation of the water quality at Tahtali dam watershed in Izmir-Turkey by means of statistical methodology. Stoch Environ Res Risk Assess 22:391–400

    Article  Google Scholar 

  • Gonçalves AM, Alpuim T (2011) Water quality monitoring using cluster analysis and linear models. Environmetrics 22:933–945

    Article  Google Scholar 

  • Goodrich DC, Faures J, Woolhiser DA, Lane LJ, Sorooshian S (1995) Measurement and analysis of small-scale convective storm rainfall variability. J Hydrol 173:283–308

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Greene AM, Robertson AW, Kirshner S (2008) Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time scales using a hidden Markov model. Q J R Meteorol Soc 134:875–887

    Article  Google Scholar 

  • Harvey AC (1996) Forecasting structural time series models and the Kalman filter. Cambridge University Press, Cambridge

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Wat Res 34:807–816

    Article  CAS  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York, pp 572

  • Journel AG, Huijbregts, ChJ (1978) Mining geostatistics. Academic Press, London, pp 600

  • Kokic P, Crimp S, Howden M (2011) Forecasting climate variables using a mixed-effect state-space model. Environmentrics 22:409–419

    Article  Google Scholar 

  • Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31(6):651–684

    Article  Google Scholar 

  • Leybourne SJ (2006) Estimation and testing of time-varying coefficient regression models in the presence of linear restrictions. J Forecast 12(1):49–62

    Article  Google Scholar 

  • Lischeid J (2009) Non-linear visualization and analysis of large water quality data sets: a model-free basis for efficient monitoring and risk assessment. Stoch Environ Res Risk Assess 23:977–990

    Article  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of ground-water quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89

    Article  CAS  Google Scholar 

  • Machado A, Silva M, Valentim H (2010) A contribute for the evaluation of water bodies status in Northern Region. Revista Recursos Hídricos 31(1):57–63

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • Mc Kenna JE (2003) An enhanced cluster analysis program with bootstrap signficance testing for ecological community analysis. Environ Model Softw 18:205–220

    Article  Google Scholar 

  • Mirás-Avalos JM, Paz-González A, Vidal-Vázquez E, Sande-Fouz P (2007) Mapping monthly rainfall data in Galicia (NW Spain) using inverse distances and geostatistical methods. Adv Geosci 10:51–57

    Article  Google Scholar 

  • Nicolau R, Rodrigues R (2000) Comparação de técnicas de interpolação espacial para mapeamento da precipitação máxima diária anual (krigagem utilizando a altitude com deriva externa). Documento Interno do INAG 17:1261–1272

    Google Scholar 

  • Oliveira RES, Lima MMCL, Vieira JMP (2005) An indicator system for surface water quality in river basins. In The fourth inter-celtic colloquium on hydrology and management of water resources, Universidade do Minho, Guimarães, Portugal

  • Pagan A (1980) Some identification and estimation results for regression models with stochastically varying coefficients. J Econom 13:341–363

    Article  Google Scholar 

  • Rathbun SL (1998) Spatial modelling in irregularly shaped regions: kriging estuaries. Environmetrics 9:109–129

    Article  CAS  Google Scholar 

  • Renwich JA, Mullan AB, Porteous A (2009) Statistical downscaling of New Zealand climate. Weather Clim 29:24–44

    Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314

    Article  Google Scholar 

  • Severino E, Alpuim T (2005) Spatiotemporal models in the estimation of area precipitation. Environmetrics 16:773–802

    Article  Google Scholar 

  • Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis TH (2003) Assessment of the surface water quality in northern Greece. Water Res 37:4119–4124

    Article  CAS  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate techniques: a case study of the Fuji river basin, Japan. Environ Modell Softw 22:464–475

    Article  Google Scholar 

  • Shumway R, Stoffer D (1982) An approach to time series smoothing and forecasting using EM algorithm. J Time Ser Anal 3:253–264

    Article  Google Scholar 

  • Varol M, Sen B (2009) Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environ Monit Assess 159:543–553

    Article  CAS  Google Scholar 

  • Vega M, Pardo RE, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592

    Article  CAS  Google Scholar 

  • Wurderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Argentina). Wat Res 35:2881–2894

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Eng. Pimenta Machado from the Portuguese Regional Directory for the Northern Environment and Natural Resources, and to Eng. Cláudia Brandão from the Portuguese Institute of Water, for sharing their skills and experiences and for supplying the monitored data. A. Manuela Gonçalves acknowledges the financial support provided by the Research Centre of Mathematics of the University of Minho through the FCT Pluriannual Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manuela Gonçalves.

Appendix

Appendix

1.1 Distribution-free estimators for the mean and for the transition matrix

In the parameters estimation of state-space models were performed distribution-free estimators developed from the original work by Costa and Alpuim (2010). However, in that work it was proposed a distribution-free estimator for state-space models with univariate observations. Thus, a straightforward generalization of these estimators is presented in order to allow their application to a class of multivariate state-space models that largely covers the present work’s needs.

To estimate the unknown parameters in the model

$$ {\mathbf Y}_t={\mathbf H}_t {\mathbf \beta}_t+{\mathbf e}_t $$
(11)
$$ {\mathbf \beta}_t={\mathbf \mu}+{\mathbf \Upphi}\left({\mathbf \beta}_{t-1}-{\mathbf \mu}\right)+{\mathbf \epsilon}_t $$
(12)

it is assumed a set of observations \({{\mathcal Y}_n=(\mathbf{Y}_1, {\mathbf Y}_2, \ldots, {\mathbf Y}_n),}\) and regular matrices of known constants \({\mathbf H}_1, {\mathbf H}_2, \ldots, {\mathbf H}_n\) are available. The mean vector \({\mathbf \mu}\) can be easily estimated by the method of moments, i.e., \(\widehat{\mathbf \mu}=n^{-1}\sum_{t=1}^n {\mathbf H}_t^{-1}{\mathbf Y}_t.\)

As variables Y t are not stationary, we are not under the usual conditions of the consistency of generalized method of moments. Thus, it is necessary to establish additional conditions to guarantee this consistency. By construction, the estimator \(\widehat{\mathbf \mu}\) of the mean vector is unbiased, so we can guarantee its consistency by proving that \(var(\widehat{\mathbf \mu})\rightarrow {\mathbf 0}\) when \(n\rightarrow+\infty,\) and thus establishing sufficient conditions. Covariance matrix of \(\widehat{\mathbf \mu}\) is given by

$$ \begin{aligned} var(\widehat{\mathbf \mu}) =\frac{1}{n^2}\sum_{t=1}^n\sum_{s=1}^nE \left[\left(\bf{H}_t^{-1}\bf{Y}_t-{\mathbf \mu}\right)\left({\mathbf H}_s^{-1} \bf{Y}_s-{\mathbf{\mu}}\right)^{\prime}\right]\\ &=\frac{1}{n^2}\sum_{t=1}^n\sum_{s=1}^nE\left[\left({\mathbf \beta}_t-{\mathbf \mu}\right)\left({\mathbf \beta}_s-{\mathbf{\mu}}\right)^{\prime} \right]+\frac{1}{n^2}\sum_{t=1}^n\bf{H}_t^{-1}{\mathbf \Upsigma}_ {\mathbf e} {\mathbf H}_t^{\prime -1}. \end{aligned} $$

Applying the Kronecker product ⊗ and the operator vec, we get

$$ vec\left[var\left(\widehat{{\mathbf{\mu}}}\right)\right]=\frac{1}{n^2}\left [\sum_{t=1}^n\sum_{s=1}^n {\mathbf{\Upgamma}}_{{\mathbf{\beta}}}(|t-s|)\right]+\frac{1} {n^2}\left[\sum_{t=1}^n\left(\bf{H}_t^{-1}\otimes\bf{H}_t^{-1}\right) \right]vec\left({\mathbf{\Upsigma}}_{\mathbf{e}} \right). $$

Under the stationarity conditions of process {β t } the first parcel is an O p , seeing that \(\sum_{k=-\infty}^{+\infty}\mathbf{\Upgamma}(k)<\infty, \) (e.g., Hamilton 1994, p. 279). To guarantee that

$$ \frac{1}{n^2}\left[\sum_{t=1}^n\left(\bf{H}_t^{-1}\otimes\bf{H}_t^{-1} \right)\right]vec\left({\mathbf{\Upsigma}}_{\mathbf{e}}\right)\buildrel {n\longrightarrow+\infty} \over {\longrightarrow}{\mathbf{0}} $$

it is sufficient to admit the additional condition |h −1 t,(i,j) | < c for all \(t=1,2,.., i,j=1,2,\ldots,m\) and for some positive constant c, where h −1 t,(i,j) represents the (ij) element of H −1 t matrix.

The autoregressive matrix \(\mathbf{\Upphi}\) is estimated by means of covariance structure of process \({\mathbf H}_t^{-1}{\mathbf Y}_t.\) We see that

$$ \begin{aligned} {\mathbf{\Upgamma}}_{\mathbf{{H}}^{-1}{\mathbf{Y}}}(k)&=E\left[\left({\mathbf{H}}_ {t+k}^{-1}\bf{Y}_{t+k}-{\mathbf{\mu}}\right)\left(\bf{H}_{t}^{-1}\bf{Y}_{t}- {\mathbf{\mu}}\right)^{\prime}\right]\\ &={\mathbf{\Upgamma}}_{{\mathbf{\beta}}}(k)={\mathbf{\Upgamma}}_k. \end{aligned} $$

In a VAR(1) process, the relation \(\mathbf{\Upgamma}_k=\mathbf{\Upphi \Upgamma}_{k-1}\) is valid, for k = 1, 2, .... Thus, we proposed the autoregressive matrix estimator \(\widehat{\Upphi}\) based on the least squares method of these equations by taking \(k=1,2,\ldots,\ell_\mathbf{\Upphi}.\) Thus, we have

$$ \widehat{{\mathbf{\Upphi}}}=\left(\sum_{k=1}^{\ell_{{\mathbf{\Upphi}}}}\widehat {{\mathbf{\Upgamma}}}_{k+1}\widehat{{\mathbf{\Upgamma}}}^{\prime}_{k} \right)\left(\sum_{k=1}^{\ell_{{\mathbf{\Upphi}}}}\widehat{{\mathbf{\Upgamma}}} _{k}\widehat{{\mathbf{\Upgamma}}}^{\prime}_{k}\right)^{-1} $$

where \(\widehat{\mathbf{\Upgamma}}_k=\frac{1}{n}\sum_{t=1}^{n-k}\left[\left(\mathbf {H}_{t+k}^{-1}\mathbf{Y}_{t+k}-\widehat{\mathbf{\mu}}\right)\left(\mathbf {H}_{t}^{-1}\bf{Y}_{t}-\widehat{\mathbf{\mu}}\right)^{\prime}\right]. \)

By construction, the autoregressive matrix estimator is consistent, since \(\widehat{\mathbf{\Upgamma}}_k\) is a consistent estimator of \(\mathbf{\Upgamma}_k.\) Whereas we have proposed a consistent estimator to \(\mathbf{\mu},\) we consider that the mean vector \(\mathbf{\mu}\) is known. To analyse the consistency of \(\widehat{\mathbf{\Upgamma}}_k\) we have

$$ \begin{aligned} \widehat{\mathbf \Upgamma}_k&=\frac{1}{n}\sum_{k=1}^{n-k}\left[({\mathbf \beta}_{t+k}-{\mathbf \mu}+{\mathbf H}^{-1}_{t+k}{\mathbf e}_{t+k})({\mathbf \beta}_ {t}-{\mathbf \mu}+\bf{H}^{-1}_{t}\bf{e}_{t})^{\prime}\right]\\ &=\frac{1}{n}\sum_{k=1}^{n-k}\left[({\mathbf \beta}_{t+k}-{\mathbf \mu}) ({\mathbf \beta}_{t}-{\mathbf \mu})^{\prime}+({\mathbf \beta}_{t+k}-{\mathbf \mu}){\mathbf e}^{\prime}_t {\mathbf H^{\prime}} _t^{-1}\right. \\ &\left. +{\mathbf e}^{\prime}_{t+k}{\mathbf H^{\prime}}_{t+k}^{-1}({\mathbf \beta} _{t}-{\mathbf \mu})^{\prime}+{\mathbf e}^{\prime}_{t+k} {{\mathbf{H^{\prime}}}}_{t+k} ^{-1}{\mathbf e}^{\prime}_t{\mathbf H^{\prime}}_t^{-1}\right]. \end{aligned} $$

Under the previously established condition, the last three parcels converge in probability to a null matrix. Indeed, by defining the second parcel as \({\mathbf A}=[A_{ij}]_{i,j=1,2,\ldots,m}\) and, with some algebraic manipulation, we have

$$ A_{ij}=\frac{1}{n}\sum_{t=1}^{n-k}\left(({\mathbf \beta}_{t,(i)}-\mu_i) \sum_{s=1}^me_{t,(s)}h^{-1}_{t,(s,j)}\right) $$

and considering σ e,(r,s) = cov(e t,(r)e t,(r)), the variance is given by

$$ var(A_{ij})=\sigma^2_{{\mathbf \beta}_{i}}\sum_{r=1}^m\sum_{s=1}^m \sigma_{e,(r,s)}\left(\frac{1}{n^2}\sum_{t=1}^{n-k}h^{-1}_{t,(r,j)}h^{-1} _{t,(s,j)}\right) $$

If the additional condition |h −1 t,(i,j) | < c is valid, this parcel tends to 0 when \(n\rightarrow+\infty. \) In a similar way, we defined the third parcel by \(\mathbf{B}=[B_{ij}]_{i,j=1,2,\ldots,m}\) with elements given by

$$ B_{ij}=\frac{1}{n}\sum_{t=1}^{n-k}\left((\beta_{t,(j)}-\mu_j) \sum_{s=1}^me_{t+k,(s)}h^{-1}_{t+k,(i,s)}\right) $$

with variance

$$ var(B_{ij})=\sigma^2_{\beta_j}\sum_{r=1}^m\sum_{s=1}^m\sigma_{e,(r,s)} \left(\frac{1}{n^2}\sum_{t=1}^{n-k}h^{-1}_{t+k,(i,s)}h^{-1}_{t+k,(i,r)} \right) $$

Again, we guarantee that B ij  = O p through the same condition |h −1 t,(i,j) | < c. As we shall see, this condition is a sufficient condition, as the last parcel also tends to a null matrix. Indeed, if we denote the last parcel as \(\mathbf{C}=[C_{ij}]_{i,j=1,2,\ldots,m}, \) we have

$$ C_{ij}=e_{t,(j)}\sum_{r=1}^me_{t+k,(r)}h^{-1}_{t+k,(i,r)}h^{-1}_{t,(i,r)} $$

with variance given by

$$ var(C_{ij})=\sigma^2_{e_j}\frac{1}{n^2}\sum_{t=1}^{n-k}\sum_{r=1}^m\sum_ {s=1}^mh^{-1}_{t+k,(i,r)}h^{-1}_{t,(i,r)}h^{-1}_{t+k,(i,s)}h^{-1}_ {t,(i,s)}\sigma_{e,(r,s)}. $$

These results allow us to conclude that if |h −1 t,(i,j) | < c, the estimator \(\widehat{\mathbf{\Upgamma}}_k\) is consistent to \(\mathbf{\Upgamma},\) when we replace the mean vector \(\mathbf{\mu}\) by a consistent estimator.

1.2 Distribution-free estimators to noise variances

The estimation of covariance matrices of errors terms e t and ε t is an important and difficult step at the same time. At times, the recursive procedures applied to the obtained Gaussian likelihood estimates diverge or produce non-positive semidefined matrices. Sometimes, these problems occur when the initial solution is not as close to estimates as necessary. We propose an estimator to \(\mathbf{\Upsigma}_\mathbf{\varepsilon}\) based on covariance structure of a VAR(1) stationary process.

We know that the relation \(\mathbf{\Upsigma}_{\mathbf{\beta}}=\mathbf{\Upphi\Upsigma\Upphi}^{\prime}+ \mathbf{\Upsigma}_{\mathbf{\varepsilon}}\) is valid in a VAR(1) stationary process, or by applying the Kronecker product ⊗ and the operator vec

$$ vec\left({\mathbf{\Upsigma}}_{{\mathbf{\beta}}}\right)=\left[{\mathbf{ I}}_{m^2}-({\mathbf{\Upphi}}\otimes {\mathbf{\Upphi}})\right]^{-1}vec\left({\mathbf{\Upsigma}}_ {{\mathbf{\varepsilon}}}\right). $$

By applying the vec operator to the equation \(\mathbf{\Upgamma}_k=\mathbf{\Upphi\Upgamma}_{k-1},\) with \(k=1,2,\ldots,\) we have:

$$ vec\left({\mathbf \Upgamma}_k\right)=vec\left({\mathbf \Upphi}^k {\mathbf \Upsigma}_{\mathbf \beta}\right) =\left({\mathbf I}_m\otimes {\mathbf \Upphi}^k \right)vec\left({\mathbf \Upsigma}_{\mathbf \beta}\right) =\left({\mathbf I}_m\otimes {\mathbf \Upphi}^k \right)\left[{\mathbf I}_{m^2}-({\mathbf \Upphi}\otimes {\mathbf \Upphi})\right]^{-1}vec\left({\mathbf \Upsigma}_ {\mathbf \varepsilon}\right) $$

or

$$ vec\left({\mathbf \Upgamma}_k\right)^{\prime}=vec\left({\mathbf \Upsigma}_ {\mathbf \varepsilon}\right)^{\prime}\left[{\mathbf I}_{m^2}- ({\mathbf \Upphi}\otimes {\mathbf \Upphi})^{\prime}\right]^{-1}\left({\mathbf I}_m\otimes {\mathbf \Upphi}^k \right)^{\prime}. $$

Note that the matrix \({\mathbf \Upsigma}_{\mathbf \varepsilon}\) is symmetric, that is, \(vec\left({\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime}_{1,(j-1) m+i-1}=vec \left({\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime}_{1,im+j}\) with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ i. Thus, we constructed a line matrix \(vec\left({\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime*},\) with m + m(m − 1)/2 columns, that we got from \(vec\left({\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime}\) by removing the elements \(vec\left({\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime}_{1,im+j},\) with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ i.

By applying the same methodology to the matrix \({\mathbf \Updelta}_k\) defined as

$$ {\mathbf \Updelta}_k=\left[{\mathbf I}_{m^2}-({\mathbf \Upphi}\otimes {\mathbf \Upphi})^{\prime}\right]^{-1}\left({\mathbf I}_m\otimes {\mathbf \Upphi}^k \right)^{\prime}, $$

we summed the columns (two by two) with the index im + j and (j − 1)m + i − 1, with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ i, thus obtaining a new matrix \({\mathbf \Updelta}_k^*\) with m + m(m − 1)/2 columns.

The estimator for \({\mathbf \Upsigma}_{\mathbf \varepsilon}\) is constructed via the least squares method applied to equations

$$ vec\left({\mathbf \Upgamma}_k\right)^{\prime}=vec\left({\mathbf \Upsigma}_ {\mathbf \varepsilon}\right)^{\prime*} {\mathbf \Updelta}_k^* $$

with \(k=1,2,\ldots,\ell_{\mathbf \varepsilon}.\) Thus, we obtained the estimator

$$ vec\left(\widehat{\mathbf \Upsigma}_{\mathbf \varepsilon}\right)^{\prime*} =\left(\sum_{k=1}^{\ell_{\mathbf \varepsilon}}\widehat{\mathbf \Upgamma} _k\widehat{\mathbf \Updelta}_k^{\prime*}\right)\left(\sum_{k=1}^ {\ell_{\mathbf \varepsilon}}\widehat{\mathbf \Updelta}_k^*\widehat {\mathbf \Updelta}_k^{\prime*}\right)^{-1}. $$
(13)

The consistency of \(\widehat{\mathbf \Upsigma}_{\mathbf \varepsilon}\) is guaranteed under the same conditions of the consistency of \(\widehat{\mathbf \Updelta}_k.\) As we have seen, a sufficient condition for this is |h −1 t,(i,j) | < c.

In order to estimate the covariance matrix \({\mathbf \Upsigma}_{\mathbf e},\) we defined

$$ {\mathbf \Uppsi}=\frac{1}{n}\sum_{t=1}^n\left[\left({\mathbf H}_t^{-1} {\mathbf Y}_t-{\mathbf \mu}\right)\left({\mathbf H}_t^{-1}{\mathbf Y}_t-{\mathbf \mu} \right)^{\prime} \right]. $$

Therefore, we had the expectation

$$ \begin{aligned} E({\mathbf \Uppsi})&=\frac{1}{n}\sum_{t=1}^nE\left[\left({\mathbf \beta}_t- {\mathbf \mu}+{\mathbf H}_t^{-1}{\mathbf e}_t\right)\left({\mathbf \beta}_t- {\mathbf \mu}+{\mathbf H}_t^{-1}{\mathbf e}_t\right)^{\prime}\right]\\ &={\mathbf \Upsigma}_{\mathbf \beta}+\frac{1}{n}\sum_{t=1}^n\left({\mathbf H}_t^{-1}{\mathbf \Upsigma}_{\mathbf e}{\mathbf H}_t^{\prime-1}\right). \end{aligned} $$

By applying the vec operator, and with some algebraic manipulation, we got

$$ vec\left(\widehat{\mathbf \Upsigma}_{\mathbf e}\right)^{\prime}=n\left [vec\left(\widehat{\mathbf \Uppsi}\right)^{\prime}-vec\left(\widehat{\mathbf \Upsigma}_{\mathbf \beta}\right)^{\prime}\right]\left[\sum_{t=1}^n\left ({\mathbf H}_t^{-1}\otimes {\mathbf H}_t^{-1}\right)^{\prime}\right]^{-1}. $$

As the matrix \({\mathbf \Upsigma}_{\mathbf e}\) is symmetric, it is necessary to adopt the same procedure as in the estimation of \({\mathbf \Upsigma}_{\mathbf \varepsilon}.\) Thus, we estimated the m + m(m − 1)/2 elements of the covariance matrix.

If we have a consistent estimator to \({\mathbf \Upsigma}_{\mathbf \beta},\) for example given by the proposed estimators to \({\mathbf \Upphi}\) and \({\mathbf \Upsigma}_{\mathbf \varepsilon},\) the consistency of \(\widehat{\mathbf \Upsigma}_{\mathbf e}\) boils down to the limit of variance of each element of \(vec({\mathbf \Upupsilon})= n vec(\widehat{\mathbf \Uppsi})^{\prime}[\sum_{t=1}^n({\mathbf H}_t^{-1}\otimes {\mathbf H}_t^{-1})^{\prime}]^{-1}.\) The variance of the (ij) element of \({\mathbf \Upupsilon}\) is given by

$$ n^2a_{ij}^2var\left[\frac{1}{n}\sum_{t=1}^n\left(\beta_{t,i}-\mu_i- \sum_{k=1}^mh^{-1}_{t,(i,k)}e_{t,k}\right)\left(\beta_{t,j}-\mu_j- \sum_{k=1}^mh^{-1}_{t,(j,k)}e_{t,k}\right)\right] $$

where h −1 t,(i,j) represents the (i,j) element of the matrix \({\mathbf H}_t^{-1}\) and a ij the (ij) element of the matrix \([\sum_{t=1}^n({\mathbf H}_t^{-1}\otimes {\mathbf H}_t^{-1})^{\prime}]^{-1}.\)

For simplicity, we adopt β t,i  − μ i  = β * t,i . If we take in account that the states \({\mathbf \beta}_t\) are uncorrelated to noise \({\mathbf e}_s\) for all t and s, the previous expression can be decomposed into four parcels. The first parcel has the form

$$ \begin{aligned} &a_{ij}^2var\left(\sum^n_{t=1}\beta_{t,i}^*\beta_{t,j}^*\right)+ a_{ij}^2var\left(\sum_{t=1}^n\beta_{t,i}^*\sum_{s=1}^mh^{-1}_ {t,(j,s)}e_{t,s}\right)\\ &+a_{ij}^2var\left(\sum_{t=1}^n\beta_{t,j}^*\sum_{k=1}^mh^{-1}_ {t,(i,k)}e_{t,k}\right)+a_{ij}^2var\left[\sum_{t=1}^n\left(\sum_{k=1} ^mh^{-1}_{t,(i,k)}e_{t,k}\sum_{s=1}^mh^{-1}_{t,(j,k)}e_{t,s}\right)\right] \end{aligned} $$

The first parcel can be decomposed into

$$ a_{ij}^2var\left(\sum^n_{t=1}\beta_{t,i}^*\beta_{t,j}^*\right)= a_{ij}^2\sum_{t=1}^nvar \left(\beta^*_{t,i}\beta^*_{t,j}\right)+\sum_{t=1}^n\sum_ {^{s=1}_{s \neq t}}^n cov \left(\beta^*_{t,i}\beta^*_{t,j},\beta^*_{s,i}\beta^*_ {s,j}\right) $$

but we can write

$$ var \left(\beta_{t,i}^*\beta_{t,j}^*\right)=cov \left(\beta_{t,i}^{2},\beta_{t,j}^{2}\right)+\sigma^2 _{\beta_i}\sigma^2_{\beta_j}-\gamma^2_{ij}. $$

In order for this parcel to be an O p , it is sufficient to admit the additional regularity conditions, such as cov t,i β t,j, β s,i β t,j ) for all t and s, that do not depend on time.

The cross terms have a similar structure. For example, the first term can be computed by,

$$ \begin{aligned} a_{ij}^2var\left(\sum_{t=1}^n\beta_{t,i}^*\sum_{s=1}^mh^{-1}_{t,(j,s)}e_{t,s}\right) &=a_{ij}^2\sum_{t=1}^n var\left(\sum_{k=1}^mh^{-1}_{t,(i,k)}\beta^*_{t,j}e_{t,k}\right)\\ &=a_{ij}^2\sum_{t=1}^n\sum_{k=1}^m h^{-2}_{t,(i,k)}\sigma^2_{\beta_j}\sigma^2_{e_k}\\ &=a_{ij}^2\sigma^2_{\beta_j}\sum_{k=1}^m\sigma^2_{e_k}\sum_{t=1}^nh^{-2}_{t,(i,k)}.\\ \end{aligned} $$

So, if we admit that the elements of matrix \(\mathbf{H}^{-1}_t\) are limited as c 1 < |h −1 t,(i,j) | < c 2, where c 1 and c 2 are positive constants, it follows that this term is an O p . In addition to these conditions on h −1 t,(i,j) , if we ensure that the vector of error e t is stationary of fourth-order, then we conclude that the last parcel of variance of the (ij) element of \({\mathbf \Upupsilon}\) is an O p , too.

Thus, under the additional stationarity conditions of fourth-order on the vector of disturbances and the above restrictions on the elements of the matrices \({\mathbf H}_t^{-1}, \) the proposed distribution-free estimator to \({\mathbf \Upsigma}_{\mathbf e}\) is consistent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, A.M., Costa, M. Predicting seasonal and hydro-meteorological impact in environmental variables modelling via Kalman filtering. Stoch Environ Res Risk Assess 27, 1021–1038 (2013). https://doi.org/10.1007/s00477-012-0640-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0640-7

Keywords

Navigation