Skip to main content
Log in

PAR(p)-vine copula based model for stochastic streamflow scenario generation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Synthetic streamflow data is vital for the energy sector, as it feeds stochastic optimisation models that determine operational policies. Considered scenarios should differ from each other, but be the same from a statistical point of view, i.e., the scenarios must preserve features of the original time series such as the mean, variance, and temporal dependence structures. Traditionally, linear models are applied for this task. Recently, the advent of copulas has led to the emergence of an alternative that overcomes the drawbacks of linear models. In this context, we propose a methodology based on vine copulas for the stochastic simulation of periodic streamflow scenarios. Copula-based models that focus on single-site inflow simulation only consider lag-one time dependence. Therefore, we suggest an approach that incorporates lags that are greater than one. Furthermore, the proposed model deals with the strong periodicity that is commonly present in monthly streamflow time series. The resulting model is a non-linear periodic autoregressive model. Our results indicate that this model successfully simulates scenarios, preserving features that are observed in historical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependences. Insur Math Econ 44(2):182–198

    Article  Google Scholar 

  • Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent random variables modeled by vines. Ann Math Artif Intell 32(1):245–268

    Article  Google Scholar 

  • Bedford T, Cooke RM (2002) Vines: a new graphical model for dependent random variables. Ann Stat 30(4):1031–1068

    Article  Google Scholar 

  • Brechmann EC, Czado C (2015) Copar-multivariate time series modeling using the copula autoregressive model. Appl Stoch Models Bus Ind 31(4):495–514

    Article  Google Scholar 

  • Chen X, Fan Y (2006) Estimation of copula-based semiparametric time series models. J Econom 130(2):307–335

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Hao Z, Singh VP (2011) Single-site monthly streamflow simulation using entropy theory. Water Resour Res 47(9):W09528. doi:10.1029/2010WR010208

  • Hao Z, Singh VP (2012) Entropy-copula method for single-site monthly streamflow simulation. Water Resour Res 48(6):W06604. doi:10.1029/2011WR011419

  • Jeong C, Lee T (2015) Copula-based modeling and stochastic simulation of seasonal intermittent streamflows for arid regions. J Hydro-Environment Res 9(4):604–613

    Article  Google Scholar 

  • Jimenez C, McLeod A, Hipel K (1989) Kalman filter estimation for periodic autoregressive-moving average models. Stoch Hydrol Hydraul 3(3):227–240

    Article  Google Scholar 

  • Joe H (1996) Families of m-variate distributions with given margins and m(m − 1)/2 bivariate dependence parameters. In: Distributions with fixed marginals and related topics, Lecture notes-monograph series, vol 28, Institute of Mathematical Statistics, pp 120–141

  • Joe H (2014) Dependence modeling with copulas. CRC Press, London

    Google Scholar 

  • Kong XM, Huang GH, Fan YR, Li YP (2015) Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stoch Env Res Risk Assess 29(3):833–846

    Article  Google Scholar 

  • Kurowicka D, Cooke RM (2006) Uncertainty analysis with high dimensional dependence modeling. Wiley, London

    Book  Google Scholar 

  • Lee T, Salas JD (2011) Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol Res 42(4):318–330

    Article  Google Scholar 

  • Li C, Singh VP, Mishra KA (2013) Monthly river flow simulation with a joint conditional density estimation network. Water Resour Res 49(6):3229–3242

    Article  Google Scholar 

  • Mai JF, Scherer M (2012) Simulating copulas: stochastic models, sampling algorithms, and applications. World Scientific, Singapore

    Book  Google Scholar 

  • McNeil AJ, Frey R, Embrechts P (2010) Quantitative risk management: concepts, techniques, and tools. Princeton University Press, Princeton

    Google Scholar 

  • Mendes BVM, Accioly VB (2014) Robust pair-copula based forecasts of realized volatility. Appl Stoch Models Bus Ind 30(2):183–199

    Article  Google Scholar 

  • Mendes BVM, Aíube C (2011) Copula based models for serial dependence. Int J Manag Financ 7(1):68–82

    Google Scholar 

  • Pereira GAA, Souza RC (2014) Long memory models to generate synthetic hydrological series. Math Prob Eng 2014:823046. doi:10.1155/2014/823046

  • Salas JD, Delleur JW, Yevjevich JW, Lane WL (1980) Applied modeling of hydrologic time series. Water Resources Publications, Littleton, CO

    Google Scholar 

  • Schepsmeier U, Stoeber J, Brechmann EC, Graeler B, Nagler T, Erhardt T (2015) VineCopula: statistical inference of vine copulas. http://CRAN.R-project.org/package=VineCopula, R package version 1.5

  • Sharma A, O’Neill R (2002) A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resour Res 38(7). doi:10.1029/2001WR000953

  • Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publ l’Inst Stat L’Univ Paris 8:229–231

    Google Scholar 

  • Smith M, A M, Almeida C, Czado C (2012) Modeling longitudinal data using a pair-copula decomposition of serial dependence. J Am Stat Assoc 105(492):1467–1479

  • Smith MS (2015) Copula modelling of dependence in multivariate time series. Int J Forecast 31(3):815–833

    Article  Google Scholar 

  • Song S, Singh VP (2010) Frequency analysis of droughts using the plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24(5):783–805

    Article  Google Scholar 

  • Song-Bai S, Kang Y (2011) Pair-copula decomposition constructions for multivariate hydrological drought frequency analysis. In: 2011 international symposium on water resource and environmental protection (ISWREP). IEEE, vol 4, pp 2635–2638

  • Souto M, Moreira A, Veiga A, Street A, Garcia J, Epprecht C (2014) A high-dimensional VARX model to simulate monthly renewable energy supply. In: Proceedings of 2014 IEEE power systems computation conference

  • Ursu E, Pereau JC (2016) Application of periodic autoregressive process to the modeling of the Garonne River flows. Stoch Environ Res Risk Assess 30(7):1785–1795

    Article  Google Scholar 

  • Xu Y, Huang G, Fan Y (2017) Multivariate flood risk analysis for Wei River. Stoch Environ Res Risk Assess 31:225–242

    Article  Google Scholar 

  • Zachariah M, Reddy MJ (2013) Development of an entropy-copula-based stochastic simulation model for generation of monthly inflows into the Hirakud Dam. ISH J Hydraul Eng 19(3):267–275

    Article  Google Scholar 

  • Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of hydrological droughts in the East River Basin, China. Stoch Environ Res Risk Assess 27(6):1397–1406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, G., Veiga, Á. PAR(p)-vine copula based model for stochastic streamflow scenario generation. Stoch Environ Res Risk Assess 32, 833–842 (2018). https://doi.org/10.1007/s00477-017-1411-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1411-2

Keywords

Navigation