Skip to main content
Log in

Schmerzen bei Patienten mit Querschnittlähmung

Pain in patients with paraplegia

  • CME
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Chronische Schmerzen bei Patienten mit Querschnittlähmung sind häufig und werden von Patienten als eine der belastendsten Folgen einer Querschnittlähmung angegeben. Es können nozizeptive, neuropathische und andere Schmerzen auftreten. Im biopsychosozialen Krankheitsmodell spielen eine Vielzahl pathophysiologischer Mechanismen in der Schmerzentstehung eine Rolle. Daraus leitet sich ein multimodaler Therapieansatz ab. Die vorliegende Arbeit gibt einen Überblick über Vorkommen, Bedeutung und Pathophysiologie chronischer Schmerzen bei Querschnittlähmung sowie auch über diagnostische und therapeutische Ansätze.

Abstract

Chronic pain is one of the most reported health problems in patients suffering from spinal cord injuries and is described by the patients as one of the most burdensome sequelae of paraplegia. Various types of pain, such as nociceptive, neuropathic and other types of pain can occur. In addition, multiple pathophysiological mechanisms based on the biopsychosocial pain model play a role in the origins of the pain. These aspects necessitate a multimodal pain management approach in this patient group. This article presents an overview of the occurrence, importance and pathophysiology of chronic pain following spinal cord injury as well as diagnostic and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Rubinelli S, Glassel A, Brach M (2016) From the person’s perspective: perceived problems in functioning among individuals with spinal cord injury in Switzerland. J Rehabil Med 48:235–243

    Article  PubMed  Google Scholar 

  2. Muller R, Brinkhof MW, Arnet U et al (2016) Prevalence and associated factors of pain in the Swiss spinal cord injury population. Spinal Cord 15:157

    Google Scholar 

  3. Brinkhof MW, Al-Khodairy A, Eriks-Hoogland I et al (2016) Health conditions in people with spinal cord injury: contemporary evidence from a population-based community survey in Switzerland. J Rehabil Med 48:197–209

    Article  PubMed  Google Scholar 

  4. Finnerup NB, Jensen MP, Norrbrink C et al (2016) A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 10:816–821

    Article  Google Scholar 

  5. Siddall PJ, Mcclelland JM, Rutkowski SB et al (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103:249–257

    Article  PubMed  Google Scholar 

  6. Guy SD, Mehta S, Harvey D et al (2016) The canpain SCI clinical practice guideline for rehabilitation management of neuropathic pain after spinal cord: recommendations for model systems of care. Spinal Cord 54(Suppl 1):S24–S27

    Article  PubMed  Google Scholar 

  7. Burke D, Fullen BM, Stokes D et al (2017) Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur J Pain 21:29–44

    Article  CAS  PubMed  Google Scholar 

  8. Mahnig S, Landmann G, Stockinger L et al (2016) Pain assessment according to the international spinal cord injury pain classification in patients with spinal cord injury referred to a multidisciplinary pain center. Spinal Cord 54(10):809. https://doi.org/10.1038/sc.2015.219

    Article  CAS  PubMed  Google Scholar 

  9. Bossuyt FM, Arnet U, Brinkhof MW et al (2017) Shoulder pain in the Swiss spinal cord injury community: prevalence and associated factors. Disabil Rehabil 13:1–11

    Article  Google Scholar 

  10. Dyson-Hudson TA, Kirshblum SC (2004) Shoulder pain in chronic spinal cord injury, Part I: Epidemiology, etiology, and pathomechanics. J Spinal Cord Med 27:4–17

    Article  PubMed  Google Scholar 

  11. Eriks-Hoogland IE, Hoekstra T, De Groot S et al (2014) Trajectories of musculoskeletal shoulder pain after spinal cord injury: identification and predictors. J Spinal Cord Med 37:288–298

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kirby RL, Fahie CL, Smith C et al (2004) Neck discomfort of wheelchair users: effect of neck position. Disabil Rehabil 26:9–15

    Article  PubMed  Google Scholar 

  13. Michailidou C, Marston L, De Souza LH et al (2014) A systematic review of the prevalence of musculoskeletal pain, back and low back pain in people with spinal cord injury. Disabil Rehabil 36:705–715

    Article  PubMed  Google Scholar 

  14. Andresen SR, Biering-Sorensen F, Hagen EM et al (2016) Pain, spasticity and quality of life in individuals with traumatic spinal cord injury in Denmark. Spinal Cord 54:973–979

    Article  CAS  PubMed  Google Scholar 

  15. Finnerup NB (2017) Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord. https://doi.org/10.1038/sc.2017.70

    Google Scholar 

  16. Engel GL (1977) The need for a new medical model: a challenge for biomedicine. Science 196:129–136

    Article  CAS  PubMed  Google Scholar 

  17. Organization WH (2001) International classification of functioning, disability and health: ICF. World Health Organization, Genf

    Google Scholar 

  18. Widerstrom-Noga EG, Finnerup NB, Siddall PJ (2009) Biopsychosocial perspective on a mechanisms-based approach to assessment and treatment of pain following spinal cord injury. J Rehabil Res Dev 46:1–12

    Article  PubMed  Google Scholar 

  19. Kirshblum SC, Burns SP, Biering-Sorensen F et al (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34:535–546

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mehta S, Guy SD, Bryce TN et al (2016) The canpain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: screening and diagnosis recommendations. Spinal Cord 54(Suppl 1):S7–S13

    Article  PubMed  Google Scholar 

  21. Widerstrom-Noga E, Biering-Sorensen F, Bryce TN et al (2016) The international spinal cord injury pain extended data set (version 1.0). Spinal Cord 54:1036–1046

    Article  CAS  PubMed  Google Scholar 

  22. Widerstrom-Noga E, Biering-Sorensen F, Bryce TN et al (2014) The international spinal cord injury pain basic data set (version 2.0). Spinal Cord 52:282–286

    Article  CAS  PubMed  Google Scholar 

  23. Bryce TN, Richards JS, Bombardier CH et al (2014) Screening for neuropathic pain after spinal cord injury with the spinal cord injury pain instrument (SCIPI): a preliminary validation study. Spinal Cord 52:407–412

    Article  CAS  PubMed  Google Scholar 

  24. Franz S, Schuld C, Wilder-Smith EP et al (2017) Spinal cord injury pain instrument and painDETECT questionnaire: convergent construct validity in individuals with spinal Cord injury. Eur J Pain. https://doi.org/10.1002/ejp.1069

    PubMed  Google Scholar 

  25. Bryce TN, Biering-Sorensen F, Finnerup NB et al (2012) International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord 50:413–417

    Article  CAS  PubMed  Google Scholar 

  26. Treede RD, Jensen TS, Campbell JN et al (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635

    Article  CAS  PubMed  Google Scholar 

  27. Finnerup NB, Haroutounian S, Kamerman P et al (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Finnerup NB (2013) Pain in patients with spinal cord injury. Pain 154(Suppl 1):S71–S76

    Article  PubMed  Google Scholar 

  29. Krebs J, Koch HG, Hartmann K et al (2016) The characteristics of posttraumatic syringomyelia. Spinal Cord 54:463–466

    Article  CAS  PubMed  Google Scholar 

  30. Watts J, Box GA, Galvin A et al (2014) Magnetic resonance imaging of intramedullary spinal cord lesions: a pictorial review. J Med Imaging Radiat Oncol 58:569–581

    Article  PubMed  Google Scholar 

  31. Curt A, Ellaway PH (2012) Clinical neurophysiology in the prognosis and monitoring of traumatic spinal cord injury. Handb Clin Neurol 109:63–75

    Article  CAS  PubMed  Google Scholar 

  32. Landmann G, Berger MF, Stockinger L et al (2017) Usefulness of laser-evoked potentials and quantitative sensory testing in the diagnosis of neuropathic spinal cord injury pain: a multiple case study. Spinal Cord 24:191

    Google Scholar 

  33. Geber C, Baumgartner U, Fechir M et al (2011) Comparison of LEP and QST and their contribution to standard sensory diagnostic assessment of spinal lesions: a pilot study. Neurol Sci 32:401–410

    Article  PubMed  Google Scholar 

  34. Haanpaa M, Attal N, Backonja M et al (2011) NeuPSIG guidelines on neuropathic pain assessment. Pain 152:14–27

    Article  PubMed  Google Scholar 

  35. Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314

    Article  PubMed  Google Scholar 

  36. Wydenkeller S, Maurizio S, Dietz V et al (2009) Neuropathic pain in spinal cord injury: significance of clinical and electrophysiological measures. Eur J Neurosci 30:91–99

    Article  PubMed  Google Scholar 

  37. Backonja MM, Attal N, Baron R et al (2013) Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 154:1807–1819

    Article  PubMed  Google Scholar 

  38. Demant DT, Lund K, Finnerup NB et al (2015) Pain relief with lidocaine 5 % patch in localized peripheral neuropathic pain in relation to pain phenotype: a randomised, double-blind, and placebo-controlled, phenotype panel study. Pain 156:2234–2244

    Article  CAS  PubMed  Google Scholar 

  39. Demant DT, Lund K, Vollert J et al (2014) The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155:2263–2273

    Article  CAS  PubMed  Google Scholar 

  40. Baron R, Maier C, Attal N et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272

    Article  PubMed  Google Scholar 

  41. Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A et al (2003) Sensory function in spinal cord injury patients with and without central pain. Brain 126:57–70

    Article  CAS  PubMed  Google Scholar 

  42. Finnerup NB, Norrbrink C, Trok K et al (2014) Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain 15:40–48

    Article  PubMed  Google Scholar 

  43. Finnerup NB, Sorensen L, Biering-Sorensen F et al (2007) Segmental hypersensitivity and spinothalamic function in spinal cord injury pain. Exp Neurol 207:139–149

    Article  PubMed  Google Scholar 

  44. Westermann A, Krumova EK, Pennekamp W et al (2012) Different underlying pain mechanisms despite identical pain characteristics: a case report of a patient with spinal cord injury. Pain 153:1537–1540

    Article  PubMed  Google Scholar 

  45. Zeilig G, Enosh S, Rubin-Asher D et al (2012) The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain. Brain 135:418–430

    Article  PubMed  Google Scholar 

  46. Finnerup NB, Baastrup C (2012) Spinal cord injury pain: mechanisms and management. Curr Pain Headache Rep 16:207–216

    Article  PubMed  Google Scholar 

  47. Nees TA, Finnerup NB, Blesch A et al (2017) Neuropathic pain after spinal cord injury: the impact of sensorimotor activity. Pain 158:371–376

    Article  PubMed  Google Scholar 

  48. Siddall PJ (2009) Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 47:352–359

    Article  CAS  PubMed  Google Scholar 

  49. Llinas RR, Ribary U, Jeanmonod D et al (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarnthein J, Jeanmonod D (2008) High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 39:1910–1917

    Article  PubMed  Google Scholar 

  51. Sarnthein J, Stern J, Aufenberg C et al (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–64

    Article  PubMed  Google Scholar 

  52. Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  CAS  PubMed  Google Scholar 

  53. Wrigley PJ, Press SR, Gustin SM et al (2009) Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 141:52–59

    Article  CAS  PubMed  Google Scholar 

  54. Jutzeler CR, Curt A, Kramer JL (2015) Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin 9:599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gustin SM, Wrigley PJ, Siddall PJ et al (2010) Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 20:1409–1419

    Article  CAS  PubMed  Google Scholar 

  56. Jutzeler CR, Huber E, Callaghan MF et al (2016) Association of pain and CNS structural changes after spinal cord injury. Sci Rep 6:18534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137:473–477

    Article  PubMed  Google Scholar 

  58. Hoenig H, Griffiths P, Ganesh S et al (2012) The accuracy of new wheelchair users’ predictions about their future wheelchair use. Am J Phys Med Rehabil 91:511–518

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sonenblum SE, Sprigle SH, Martin JS (2016) Everyday sitting behavior of full-time wheelchair users. J Rehabil Res Dev 53:585–598

    Article  PubMed  Google Scholar 

  60. Sprigle S, Cohen L, Davis K (2007) Establishing seating and wheeled mobility research priorities. Disabil Rehabil Assist Technol 2:169–172

    Article  PubMed  Google Scholar 

  61. Crane BA, Holm MB, Hobson D et al (2005) Test-retest reliability, internal item consistency, and concurrent validity of the wheelchair seating discomfort assessment tool. Assist Technol 17:98–107

    Article  PubMed  Google Scholar 

  62. Giner-Pascual M, Alcanyis-Alberola M, Millan Gonzalez L et al (2011) Shoulder pain in cases of spinal injury: influence of the position of the wheelchair seat. Int J Rehabil Res 34:282–289

    Article  PubMed  Google Scholar 

  63. Li CT, Chen YN, Chang CH et al (2014) The effects of backward adjustable thoracic support in wheelchair on spinal curvature and back muscle activation for elderly people. PLOS ONE 9:e113644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Barrios C, Tunon MT, Engstrom W et al (1989) Paraspinal muscle pathology in experimental scoliosis. Arch Orthop Trauma Surg 108:342–345

    Article  CAS  PubMed  Google Scholar 

  65. Engström B (2002) Ergonomic Seating A True Challenge Wheelchair Seating & Mobility Principles. Posturalis Books, Hässelby, Sweden

    Google Scholar 

  66. Keefe FJ, Rumble ME, Scipio CD et al (2004) Psychological aspects of persistent pain: current state of the science. J Pain 5:195–211

    Article  PubMed  Google Scholar 

  67. Carver CS, Harmon-Jones E (2009) Anger is an approach-related affect: evidence and implications. Psychol Bull 135:183–204

    Article  PubMed  Google Scholar 

  68. Finan PH, Garland EL (2015) The role of positive affect in pain and its treatment. Clin J Pain 31:177–187

    Article  PubMed  PubMed Central  Google Scholar 

  69. Main CJ, Spanswick CC (2000) Models of pain, in pain management: an interdisciplinary approach. Churchill Livingstone, Edinburgh

    Google Scholar 

  70. Muller R, Landmann G, Bechir M et al (2017) Chronic pain, depression and quality of life in individuals with spinal cord injury: mediating role of participation. J Rehabil Med 49(6):489–496. https://doi.org/10.2340/16501977-2241

    Article  PubMed  Google Scholar 

  71. Craig A, Tran Y, Middleton J (2009) Psychological morbidity and spinal cord injury: a systematic review. Spinal Cord 47:108–114

    Article  CAS  PubMed  Google Scholar 

  72. Hanssen MM, Peters ML, Vlaeyen JW et al (2013) Optimism lowers pain: evidence of the causal status and underlying mechanisms. Pain 154:53–58

    Article  PubMed  Google Scholar 

  73. Siddall PJ, Mcindoe L, Austin P et al (2017) The impact of pain on spiritual well-being in people with a spinal cord injury. Spinal Cord 55:105–111

    Article  CAS  PubMed  Google Scholar 

  74. Smith BW, Tooley EM, Montague EQ et al (2009) The role of resilience and purpose in life in habituation to heat and cold pain. J Pain 10:493–500

    Article  PubMed  Google Scholar 

  75. Jensen MP, Moore MR, Bockow TB et al (2011) Psychosocial factors and adjustment to chronic pain in persons with physical disabilities: a systematic review. Arch Phys Med Rehabil 92:146–160

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kellner U, Halder C, Litschi M et al (2013) Pain and psychological health status in chronic pain patients with migration background – the Zurich study. Clin Rheumatol 32:189–197

    Article  PubMed  Google Scholar 

  77. Bonathan C, Hearn L, Williams AC (2013) Socioeconomic status and the course and consequences of chronic pain. Pain Manag 3:159–162

    Article  PubMed  Google Scholar 

  78. Loh E, Guy SD, Mehta S et al (2016) The Canpain SCI clinical practice guidelines for rehabilitation management of Neuropathic pain after spinal cord: introduction, methodology and recommendation overview. Spinal Cord 54(Suppl 1):S1–S6

    Article  PubMed  Google Scholar 

  79. Kaiser U, Sabatowski R, Azad SC (2015) Multimodal pain therapy. Current situation. Schmerz 29:550–556

    Article  CAS  PubMed  Google Scholar 

  80. Kaiser U, Treede RD, Sabatowski R (2017) Multimodal pain therapy in chronic noncancer pain-gold standard or need for further clarification? Pain. https://doi.org/10.1097/j.pain.0000000000000902

    PubMed  Google Scholar 

  81. Norrbrink C, Lofgren M (2016) Needs and requests – patients and physicians voices about improving the management of spinal cord injury neuropathic pain. Disabil Rehabil 38:151–158

    Article  PubMed  Google Scholar 

  82. Siddall PJ, Middleton JW (2006) A proposed algorithm for the management of pain following spinal cord injury. Spinal Cord 44:67–77

    Article  CAS  PubMed  Google Scholar 

  83. Harvey LA, Glinsky JV, Bowden JL (2016) The effectiveness of 22 commonly administered physiotherapy interventions for people with spinal cord injury: a systematic review. Spinal Cord 28:95

    Google Scholar 

  84. Wilbanks SR, Rogers R, Pool S et al (2016) Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. J Spinal Cord Med 1:1–10

    Article  Google Scholar 

  85. Hicks AL, Adams MM, Ginis MK et al (2005) Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 43:291–298

    Article  CAS  PubMed  Google Scholar 

  86. Paleg G, Livingstone R (2015) Systematic review and clinical recommendations for dosage of supported home-based standing programs for adults with stroke, spinal cord injury and other neurological conditions. BMC Musculoskelet Disord 16:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ayas S, Leblebici B, Sozay S et al (2006) The effect of abdominal massage on bowel function in patients with spinal cord injury. Am J Phys Med Rehabil 85:951–955

    Article  PubMed  Google Scholar 

  88. Bundesärztekammer (Bäk) KBK, Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften (Awmf). (2017) Nationale Versorgungsleitlinie Nicht-spezifischer Kreuzschmerz – Langfassung. In, www.versorgungsleitlinien.de, www.awmf.org

  89. Esquenazi A, Albanese A, Chancellor MB et al (2013) Evidence-based review and assessment of botulinum neurotoxin for the treatment of adult spasticity in the upper motor neuron syndrome. Toxicon 67:115–128

    Article  CAS  PubMed  Google Scholar 

  90. Nalysnyk L, Papapetropoulos S, Rotella P et al (2013) OnabotulinumtoxinA muscle injection patterns in adult spasticity: a systematic literature review. BMC Neurol 13:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. DGFN (2012) Spastisches Syndrom. http://www.awmf.org/uploads/tx_szleitlinien/030-078l_S1_Spastisches_Syndrom_Therapie_2012_verlaengert.pdf. Zugegriffen: 20.09.2017

    Google Scholar 

  92. Faaborg PM, Finnerup NB, Christensen P et al (2013) Abdominal pain: a comparison between Neurogenic bowel dysfunction and chronic idiopathic constipation. Gastroenterol Res Pract. https://doi.org/10.1155/2013/365037

    PubMed  PubMed Central  Google Scholar 

  93. Krassioukov A, Eng JJ, Claxton G et al (2010) Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord 48:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Colloca L, Ludman T, Bouhassira D et al (2017) Neuropathic pain. Nat Rev Dis Primers. https://doi.org/10.1038/nrdp.2017.2

    PubMed  PubMed Central  Google Scholar 

  95. Guy SD, Mehta S, Casalino A et al (2016) The canpain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: recommendations for treatment. Spinal Cord 54(Suppl 1):S14–S23

    Article  PubMed  Google Scholar 

  96. Finnerup NB, Attal N, Haroutounian S et al (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Petzke F, Enax-Krumova EK, Hauser W (2016) Efficacy, tolerability and safety of cannabinoids for chronic neuropathic pain: a systematic review of randomized controlled studies. Schmerz 30:62–88

    Article  CAS  PubMed  Google Scholar 

  98. Butler AC, Chapman JE, Forman EM et al (2006) The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin Psychol Rev 26:17–31

    Article  PubMed  Google Scholar 

  99. Orenczuk S, Slivinski J, Mehta S, Teasell RW (2010) Depression following spinal Cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Mehta S, Sakakibara BM (Hrsg) Spinal cord injury rehabilitation evidence (SCIRE). Version 3.0

    Google Scholar 

  100. Dorstyn D, Mathias J, Denson L (2011) Efficacy of cognitive behavior therapy for the management of psychological outcomes following spinal cord injury: a meta-analysis. J Health Psychol 16:374–391

    Article  PubMed  Google Scholar 

  101. Mehta S, Orenczuk S, Hansen KT et al (2011) An evidence-based review of the effectiveness of cognitive behavioral therapy for psychosocial issues post-spinal cord injury. Rehabil Psychol 56:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  102. Delsignore A, Schnyder U (2007) Control expectancies as predictors of psychotherapy outcome: a systematic review. Br J Clin Psychol 46:467–483

    Article  PubMed  Google Scholar 

  103. Schoenberg M, Shiloh S (2002) Hospitalized patients’ views on in-ward psychological counseling. Patient Educ Couns 48:123–129

    Article  PubMed  Google Scholar 

  104. Norrbrink Budh C, Kowalski J, Lundeberg T (2006) A comprehensive pain management programme comprising educational, cognitive and behavioural interventions for neuropathic pain following spinal cord injury. J Rehabil Med 38:172–180

    Article  PubMed  Google Scholar 

  105. Teasell R, Mehta S, Aubut J, Foulon BL, Wolfe DL, Hsieh JTC, Townson AF, Short C (2010) Pain following spinal cord injury. In: Eng JJTR, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Mehta S, Sakakibara BM (Hrsg) Spinal cord injury rehabilitation evidence. Version 3.0

    Google Scholar 

  106. Jensen M, Patterson DR (2006) Hypnotic treatment of chronic pain. J Behav Med 29:95–124

    Article  PubMed  Google Scholar 

  107. Jensen M, Barber J, Williams-Avery RM, Flores L, Brown MZ (2000) The effect of hypnotic suggestion on spinal cord injury pain. J Back Musculoskelet Rehabil 14:3–10

    Article  Google Scholar 

  108. Jensen MP, Barber J, Romano JM et al (2009) Effects of self-hypnosis training and EMG biofeedback relaxation training on chronic pain in persons with spinal-cord injury. Int J Clin Exp Hypn 57:239–268

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kabat-Zinn J (2003) Mindfulness-based interventions in context: past, present and future. Clin Psychol Sci Pract 10:144–156

    Article  Google Scholar 

  110. Kabat-Zinn J (1982) An outpatients program in behavioural medicine for chronic pain patients based on the practice of mindfulness meditation: Preliminary considerations and preliminary results. Gen Hosp Psychiatry 4:33–47

    Article  CAS  PubMed  Google Scholar 

  111. Kabat-Zinn J (1994) Wherever you go, there you are: mindfulness meditation in everyday life. Hyperion, New York

    Google Scholar 

  112. Chiesa A, Serretti A (2011) Mindfulness-based interventions for chronic pain: a systematic review of the evidence. J Altern Complement Med 17:83–93

    Article  PubMed  Google Scholar 

  113. Diener E, Lucas RE, Oishi S (2002) Subjective well-being: the science of happiness and life satisfaction. In: Snyder CR, LOpez SJ (Hrsg) The handbook of positive psychology. Oxford University Press, New York, S 63–73

    Google Scholar 

  114. Fava GA, Ruini C, Rafanelli C et al (2005) Well-being therapy of generalized anxiety disorder. Psychother Psychosom 74:26–30

    Article  PubMed  Google Scholar 

  115. Sin NL, Lyubomirsky S (2009) Enhancing well-being and alleviating depressive symptoms with positive psychology interventions: a practice-friendly meta-analysis. J Clin Psychol 65:467–487

    Article  PubMed  Google Scholar 

  116. Muller R, Gertz KJ, Molton IR et al (2016) Effects of a tailored positive psychology intervention on well-being and pain in individuals with chronic pain and a physical disability: a feasibility trial. Clin J Pain 32:32–44

    Article  PubMed  Google Scholar 

  117. Dworkin RH, O’connor AB, Backonja M et al (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237–251

    Article  CAS  PubMed  Google Scholar 

  118. Abejon D, Garcia-Del-Valle S, Fuentes ML et al (2007) Pulsed radiofrequency in lumbar radicular pain: clinical effects in various etiological groups. Pain Pract 7:21–26

    Article  PubMed  Google Scholar 

  119. Chua NH, Vissers KC, Sluijter ME (2011) Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications – a review. Acta Neurochir (Wien) 153:763–771

    Article  Google Scholar 

  120. Attal N, Gaude V, Brasseur L et al (2000) Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology 54:564–574

    Article  CAS  PubMed  Google Scholar 

  121. Finnerup NB, Biering-Sorensen F, Johannesen IL et al (2005) Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology 102:1023–1030

    Article  CAS  PubMed  Google Scholar 

  122. Eide PK, Stubhaug A, Stenehjem AE (1995) Central dysesthesia pain after traumatic spinal cord injury is dependent on N‑methyl-D-aspartate receptor activation. Neurosurgery 37:1080–1087

    Article  CAS  PubMed  Google Scholar 

  123. Kim K, Mishina M, Kokubo R et al (2013) Ketamine for acute neuropathic pain in patients with spinal cord injury. J Clin Neurosci 20:804–807

    Article  CAS  PubMed  Google Scholar 

  124. Kvarnstrom A, Karlsten R, Quiding H et al (2004) The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand 48:498–506

    Article  CAS  PubMed  Google Scholar 

  125. Cruccu G, Garcia-Larrea L, Hansson P et al (2016) EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur J Neurol 23:1489–1499

    Article  CAS  PubMed  Google Scholar 

  126. Eick J, Richardson EJ (2015) Cortical activation during visual illusory walking in persons with spinal cord injury: a pilot study. Arch Phys Med Rehabil 96:750–753

    Article  PubMed  Google Scholar 

  127. Boesch E, Bellan V, Moseley GL et al (2016) The effect of bodily illusions on clinical pain: a systematic review and meta-analysis. Pain 157:516–529

    Article  PubMed  Google Scholar 

  128. Soler MD, Kumru H, Pelayo R et al (2010) Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 133:2565–2577

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bi X, Lv H, Chen BL et al (2015) Effects of transcutaneous electrical nerve stimulation on pain in patients with spinal cord injury: a randomized controlled trial. J Phys Ther Sci 27:23–25

    Article  PubMed  PubMed Central  Google Scholar 

  130. Celik EC, Erhan B, Gunduz B et al (2013) The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury. Spinal Cord 51:334–337

    Article  CAS  PubMed  Google Scholar 

  131. Ozkul C, Kilinc M, Yildirim SA et al (2015) Effects of visual illusion and transcutaneous electrical nerve stimulation on neuropathic pain in patients with spinal cord injury: a randomised controlled cross-over trial. J Back Musculoskelet Rehabil 28:709–719

    Article  PubMed  Google Scholar 

  132. Taweel WA, Seyam R (2015) Neurogenic bladder in spinal cord injury patients. Res Rep Urol 7:85–99

    PubMed  PubMed Central  Google Scholar 

  133. Wyndaele JJ (2016) The management of neurogenic lower urinary tract dysfunction after spinal cord injury. Nat Rev Urol 13:705–714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Landmann MSc.

Ethics declarations

Interessenkonflikt

G. Landmann erhielt Vortragshonorare der Firmen Astellas, Eli Lilly, Grünenthal, Mundipharma und Pfizer. Zudem ist er Mitglied im Advisory Board Pregabalin der Fa. Pfizer. Schweiz. E.-C. Chang, W. Dumat, A. Lutz, R. Müller, A. Scheel-Sailer, K. Schwerzmann, N. Sigajew und A. Ljutow geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

CME-Fragebogen

CME-Fragebogen

Wie hoch liegt die Prävalenz von Schmerzen bei Patienten mit Querschnittlähmung?

34 %

41 %

53 %

59 %

74 %

Welche Aussage zu nozizeptiven Schmerzen bei Querschnittgelähmten trifft zu?

Sie treten ausschließlich oberhalb des Verletzungsniveaus auf.

Sie verstärken sich in der Regel nicht bei Bewegung.

Sie sind der häufigste Schmerztyp bei Querschnittlähmung.

Sie treten nur in der akuten Krankheitsphase auf.

Antiepileptika zählen zu den Behandlungsoptionen der ersten Wahl.

Welche Aussage zu neuropathischen Schmerzen infolge Querschnittlähmung trifft zu?

Sie sind der häufigste Schmerztyp bei Querschnittlähmung.

Sie werden in Schmerzen auf Verletzungsniveau und Schmerzen unterhalb des Verletzungsniveaus eingeteilt.

Sie sind in der Regel gut behandelbar.

Häufig treten sie auch oberhalb des Verletzungsniveaus auf.

Sie treten häufig erst Jahre nach der Verletzung auf.

Wie wird die Diagnose neuropathischer Schmerzen infolge Querschnittlähmung gestellt?

Mittels Elektronneurographie.

Mittels laserevozierter Potenziale.

Entscheidend sind Anamneseerhebung und klinische Untersuchung im Kontext der apparativen Diagnostik.

Mittels MRT.

Mittels quantitativer sensorischer Testung.

Welcher Mechanismus wird nicht zu möglichen Ursachen neuropathischer Schmerzen gezählt?

Kortikale Reorganisation

Reorganisationsphänomene am Hinterhorn

Spontanaktivität im spinothalamischen Trakt

Periphere Sensibilisierung

Läsion in den motorischen Leitungsbahnen

Welche Aussage bezüglich psychologischer Aspekte bei Querschnittlähmung trifft nicht zu?

Das biopsychosoziale Krankheitsmodell spielt bei neuropathischen Schmerzen keine Rolle.

Die Schmerzpsychologie ist ein wesentlicher Bestandteil der multimodalen Schmerztherapie.

Das Krankheitsmodell nach Main und Spanswik beschreibt Faktoren der Schmerzchronifizierung.

Die Wirksamkeit der kognitiven Verhaltenstherapie ist belegt.

Positivpsychologische Verfahren können Schmerzen und depressive Symptome signifikant bessern.

Welche Aussage bezüglich der Therapie nozizeptiver Schmerzen bei Querschnittlähmung trifft zu?

Eine Rollstuhlevaluation ist in der Regel nicht erforderlich.

Die Therapie der Spastik hat keinen wesentlichen Einfluss auf nozizeptive Schmerzen.

Die Evidenz für Fitnesstraining, Hand- und Rollstuhltraining ist negativ.

Nozizeptive Schmerzen treten eher selten im Schultergelenk auf.

Bei nozizeptiven Rückenschmerzen sollte die Rollstuhlsitzposition evaluiert werden.

Welche Aussage zur interdisziplinären Schmerztherapie bei Querschnittlähmung trifft zu?

Eine interdisziplinäre Schmerztherapie sollte bei Querschnittgelähmten mit Schmerzen nicht angewendet werden.

Das biopsychomodale Krankheitsmodell ist in der Therapie chronischer Schmerzen etabliert.

Sie kann erfolgversprechend nur stationär durchgeführt werden.

Sie beinhaltet aus grundsätzlichen Überlegungen in der Regel eine Psychoanalyse.

Sie kommt häufig mit geringen Ressourcen aus.

Welches Medikament bzw. welche Medikamentenklasse ist Mittel der 1. Wahl in der Therapie neuropathischer Schmerzen infolge Querschnittlähmung?

Ketamin

Pregabalin

Cannabinoide

Opioide

Carbamazepin

Welche Aussage gilt für die interventionelle Schmerztherapie bei Patienten mit Querschnittlähmung?

Die epidurale Rückenmarkstimulation zeigt eine hohe Wirksamkeit.

Die Tiefenhirnstimulation wird häufig angewendet.

Die interventionelle Schmerztherapie ist eine First-line-Therapie.

Für die meisten Verfahren ist die Evidenz für die Wirksamkeit gering bzw. widersprüchlich.

Die repetitive transkranielle Magnetstimulation zeigt bei nozizeptiven Schmerzen eine gute Wirksamkeit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landmann, G., Chang, EC., Dumat, W. et al. Schmerzen bei Patienten mit Querschnittlähmung. Schmerz 31, 527–545 (2017). https://doi.org/10.1007/s00482-017-0250-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-017-0250-x

Schlüsselwörter

Keywords

Navigation