Skip to main content

Advertisement

Log in

Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina)

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Long range transport of airborne pollen has been seldom studied in South America. Backward trajectories of Celtis and Nothofagus pollen grains trapped over a meteorological station outside Mar del Plata City were calculated in one-hour steps using the regional hybrid model developed by the NOAA (HYSPLIT 4.5) and the data of the NCEP filed in the NOAA server. Results showed that the observed trajectories agree with the location of vegetation sources of the collected tree species. In the case of Celtis, the transport was associated to anticyclones located east of the city, generating winds with a N-NE component, which produce pollen cloud advection from the Celtis forests located some tens of kilometers to the N and NE of the city. The sources of Nothofagus pollen correspond to a narrow strip on the Andes slopes between 39° and 55°S, at least 1100 km to the SW of Mar del Plata. The transport was associated to eastward displacement of the troughs corresponding to the Westerlies circulation and the presence of an anticyclone system that brings back Nothofagus pollen towards Mar del Plata area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arya SP (1999) Air pollution meteorology and dispersion. Oxford University Press, New York

    Google Scholar 

  • Bianchi MM (1994) El muestreo aerobiológico en Mar del Plata. Aportes de una nueva metodología al análisis de polen. Su aplicación en el diagnóstico de la polinosis. Monografía N° 10. Academia Nacional de Ciencias, Buenos Aires

  • Bianchi MM, Olabuenaga SE, Dzendoletas MA, Crivelli ES (2004). El registro polínico atmosférico de San Carlos de Bariloche: setiembre 2001–setiembre 2002. Rev Mus Argentino Cien Nat 6:1–7

    Google Scholar 

  • Bortenschlager S (1969) Pollenanalyse des Gletschereises-Grundlegende Fragen der Pollenanalyse überhaupt. In: Faegri K, Iversen J (eds) Textbook of Pollen Analysis. Wiley, Chichester

    Google Scholar 

  • Cabezudo B, Recio M, Sánchez-Laulhé JM, Trigo MM, Toro FJ, Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmos Environ 31:3323–3328

    Article  CAS  Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Editorial ACME T II, Buenos Aires

    Google Scholar 

  • Draxler RR (1996) Trajectory optimization for balloon flight planning. Weather Forecast 11:111–114

    Article  Google Scholar 

  • Draxler RR, Hess GD (1997) Description of the Hysplit_4 modelling system. NOAA Technical Memorandum ERL ARL-224, pp 24 December

  • Draxler RR, Hess GD (1998) An overview of the Hysplit_4 modelling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Gassmann MI, Pérez CF, Gardiol JM (2002) Sea-Land Breeze in a Coastal City and its Effect in the Pollen Transport. Int J Biometeorol 46:118–125

    Article  PubMed  Google Scholar 

  • Hafsten U (1960) Pleistocene development of vegetation and climate in Tristan da Cunha and Gough Island. In: Faegri K, Iversen J (eds) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Hirst JM, Hurst GW (1967) Long-distance spore transport. In: Gregory PH, Monteith JL (eds) Airborne microbes. Cambridge University Press, Cambridge, pp 307–344

    Google Scholar 

  • Hjelmroos M (1991) Evidence of long-distance transport of Betula pollen. Grana 30:215–228

    Google Scholar 

  • Hjelmroos M, Franzén LG (1994) Implications of recent long-distance pollen transport events for the interpretation of fossil pollen records in Fennoscandia. Rev Palaeobot Palynol 82:175–189

    Article  Google Scholar 

  • HYSPLIT_4 (Hybrid Single-Particle Lagrangian Integrated Trajectory Model), 1997, Web address: http://www.arl.noaa.gov/ready/hysplit4.html. NOAA Air Resources Laboratory Silver Spring, MD, USA

  • Johansen S (1991) Airborne Pollen and spores on the Arctic Island of Jan Mayen. Grana 30:373–379

    Google Scholar 

  • Johansen S, Hafsten U (1988) Airborne pollen and spore registrations at Ny-Alesund, Svalbard, summer 1986. Polar Res 6:11–17

    Article  Google Scholar 

  • Käpylä M, Penttinen A (1981) An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20:131–141

    Google Scholar 

  • Kawashima S, Takahashi Y (1995) Modelling and simulation of mesoscale dispersion processes for airborne cedar pollen. Grana 34:142–150

    Google Scholar 

  • Lanner R (1966) Needed: a new approach to the study of pollen dispersal. In: Faegri, K and Iversen J. (eds) Textbook of pollen analysis. Wiley, Chichester, pp 27–28

    Google Scholar 

  • Latorre F (1997) Comparison between phonological and aerobiological patterns of some arboreal species of Mar del Plata (Argentina). Aerobiologia 13:49–59

    Article  Google Scholar 

  • Latorre F, Pérez CF (1997) One year of airborne pollen sampling in Mar del Plata (Argentina). Grana 36:49–53

    Article  Google Scholar 

  • Linskens HF, Bargagli R, Cresti M, Focardi S (1993) Entrampment of long-distance transported pollen prains by various moss species in coastal Victoria Land, Antarctica. Polar Biol 13:81–87

    Article  Google Scholar 

  • Lovelock JE, Maggs RJ, Wade RJ (1973) Halogenated hydrocarbons in and over Atlantic. Nature 241:194–196

    Article  CAS  Google Scholar 

  • Machta L (1958) Global scale dispersion by the atmosphere. In Proceedings of Second United Nations Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol 18

  • McAndrews JH (1984) Pollen analysis of the 1973 ice core from Devon Island glacier, Canada. In: Faegri K, Iversen J (eds) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Nitiu DS (2003) Annual, daily and intradiurnal variation of Celtis pollen in the city of La Plata, Argentina. Aerobiologia 19:71–78

    Article  Google Scholar 

  • Paez MM, Schäbitz F, Stutz S (2001) Modern pollen-vegetation and isopoll maps in southern Argentina. J Biogeogr 28:997–1021

    Article  Google Scholar 

  • Palma B, Riveros M, Barlow P (1996) Pollen flow in three species of Nothofagus in the south of Chile. Acta Hort. (ISHS) 416: 73–80. http://www.actahort.org/books/416/416_8.htm

    Google Scholar 

  • Parodi L (1940) Distribución geográfica de los talares de la Pcia. De Buenos Aires. Darwiniana 4:33–56

    Google Scholar 

  • Pendergast MM (1984) Meteorological fundamentals. In: Randerson D (ed) Atmospheric science and power production U.S. Department of Energy, Technical Information Center, Oak Ridge, TN, pp 33–79

    Google Scholar 

  • Pérez CF, Paez MM (1998) Seasonal airborne pollen pattern in Mar del Plata city, Argentina. Aerobiologia 14:383–389

    Article  Google Scholar 

  • Pérez CF (2000) Caracterización de la nube polínica y determinantes meteorológicos de la dispersión del sistema urbano-rural de Mar del Plata. PhD Thesis. University of Mar del Plata,

  • Pérez CF, Gardiol JM, Paez MM (2001) Difusión atmosférica de polen en el sistema urbano-rural de la ciudad de Mar del Plata (Argentina), en los tres últimos meses del año 1995. Polen 11:87–98

    Google Scholar 

  • Pérez CF, Gardiol JM, Paez MM (2003a) Comparison of diurnal variation of airborne pollen in Mar del Plata (Argentina). 2. Arboreal pollen Grana 42:161–167

    Article  Google Scholar 

  • Pérez CF, Stutz S, Pastorino S, Latorre F (2003b) Depositación polínica actual en el area de la laguna de mar Chiquita, Mar del Plata, Argentina. XII Simposio Argentino de Paleobotánica y Palinología. Buenos Aires. Resúmenes

  • Prentice C (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Raynor G, Ogden G, Hayes J (1972) Dispersion and deposition of corn pollen from experimental sources. Agron J 64:420–427

    Google Scholar 

  • Tampieri F, Mandrioli P, Puppi GL (1977) Medium range transport of airborne pollen. Agric Meteorol 18:9–20

    Article  Google Scholar 

Download references

Acknowledgements

The present study was made with the support of the University of Buenos Aires grant IX-286/04. We gratefully thank the Argentinean Servicio Meteorologico Nacional and the Mar del Plata University which provided the meteorological surface data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María I. Gassmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassmann, M.I., Pérez, C.F. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int J Biometeorol 50, 280–291 (2006). https://doi.org/10.1007/s00484-005-0021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-005-0021-8

Keywords

Navigation