Skip to main content

Advertisement

Log in

Elevational species shifts in a warmer climate are overestimated when based on weather station data

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Strong topographic variation interacting with low stature alpine vegetation creates a multitude of micro-habitats poorly represented by common 2 m above the ground meteorological measurements (weather station data). However, the extent to which the actual habitat temperatures in alpine landscapes deviate from meteorological data at different spatial scales has rarely been quantified. In this study, we assessed thermal surface and soil conditions across topographically rich alpine landscapes by thermal imagery and miniature data loggers from regional (2-km2) to plot (1-m2) scale. The data were used to quantify the effects of spatial sampling resolution on current micro-habitat distributions and habitat loss due to climate warming scenarios. Soil temperatures showed substantial variation among slopes (2–3 K) dependent on slope exposure, within slopes (3–4 K) due to micro-topography and within 1-m2 plots (1 K) as a result of plant cover effects. A reduction of spatial sampling resolution from 1 × 1 m to 100 × 100 m leads to an underestimation of current habitat diversity by 25% and predicts a six-times higher habitat loss in a 2-K warming scenario. Our results demonstrate that weather station data are unable to reflect the complex thermal patterns of aerodynamically decoupled alpine vegetation at the investigated scales. Thus, the use of interpolated weather station data to describe alpine life conditions without considering the micro-topographically induced thermal mosaic might lead to misinterpretation and inaccurate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Algar AC, Kharouba HM, Young ER, Kerr JT (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32:22–33

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005a) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005b) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Bahn M and Körner C (2003) Recent increases in summit flora caused by warming in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine diversity in Europe. Springer, New York, pp 437-441

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407

    Article  Google Scholar 

  • Beniston M (2006) Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16

    Article  Google Scholar 

  • Beniston M, Fox DG, Adhikary S, Andresson R, Guisan A, Holten JI, Ines J, Maitima J, Price M, Tessier L (1996) The impacts of climate change on mountain regions. In: Second Assessment Report of the Intergovernmental Panel on Climate Change (IPPC). Cambridge University Press

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Billings WD, Mooney HA (1968) Ecology of arctic and alpine plants. Biol Rev Camb Philos Soc 43:481–529

    Google Scholar 

  • Cernusca A (1976) Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps. Oecol Plant 11:71–101

    Google Scholar 

  • Charpentier MA, Groffman PM (1992) Soil-moisture variability within remote-sensing pixels. J Geophys Res Atmos 97:18987–18995

    Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cosma S, Richard E, Miniscloux F (2002) The role of small-scale orographic features in the spatial distribution of precipitation. Q J R Meteorol Soc 128:75–92

    Article  Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal-species and plant-species richness. Am Nat 137:27–49

    Article  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Fischer AG (1960) Latitudinal variations in organic diversity. Evolution 14:64–81

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Herrick JE, Range JE (2005) Monitoring manual for grassland, shrubland and savanna ecosystems. USDA-ARS Jornada Experimental Range, Las Cruces, N.M

    Google Scholar 

  • Hills RC, Reynolds SG (1969) Illustrations of soil moisture variability in selected areas and plots of different sizes. J Hydrol 8:27–47

    Article  Google Scholar 

  • Hutchinson GE (1957) Population studies - animal ecology and demography - concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Jackson RB, Caldwell MM (1993) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74:612–614

    Article  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil-temperature and root-growth. Soil Sci 154:290–299

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, Southeastern Australia. Acta Oecol, Oecol Plant 4:117–124

    Google Scholar 

  • Körner C, Demoraes J (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Oecol Plant 14:109–120

    Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. The Company of Biology, Cambridge, pp 25–57

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Körner C, Allison A, Hilscher H (1983) Altitudinal variation of leaf diffusive conductance and leaf anatomy in heliophytes of montane New-Guinea and their interrelation with microclimate. Flora 174:91–135

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperature limits of CO2 uptake and temperature resistance of leaves of alpine plants during growing season. Oecol Plant 11:361–374

    Google Scholar 

  • Larcher W, Kainmuller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change Hum Policy Dimens 17:420–428

    Google Scholar 

  • Pauli H, Gottfried M, Reier K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Chang Biol 13:147–156

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Randin CF, Dirnbock T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Chang Biol 15:1557–1569

    Article  Google Scholar 

  • Reynolds SG (1974) A note on the relationship between size of area and soil moisture variability. J Hydrol 22:71–76

    Article  Google Scholar 

  • Reynolds HL, Hungate BA, Iii FSC, D'Antonio CM (1997) Soil heterogeneity and plant competition in an annual grassland. Ecology 78:2076–2090

    Google Scholar 

  • Salisbury FB, Spomer GG (1964) Leaf temperatures of alpine plants in the field. Planta 60:497–505

    Article  Google Scholar 

  • Scherrer D, Körner C (2010a) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Chang Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2010b) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. doi:10.1111/j.1365-2699.2010.02407.x

    Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  Google Scholar 

  • Smith WK, Geller GN (1979) Plant transpiration at high elevations - theory, field-measurements, and comparisons with desert plants. Oecologia 41:109–122

    Article  Google Scholar 

  • Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W (2010) Projected impacts of climate change on regional capacities for global plant species richness. Proc R Soc Lond B 277:2271–2280

    Article  Google Scholar 

  • Steinger T, Körner C, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99

    Article  Google Scholar 

  • Takasu K (1953) Leaf temperature under natural environments (Microclimatic study V). Meml Coll Sci B 20:179–188

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  Google Scholar 

  • Thuiller W, Araújo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Biodiversity conservation: uncertainty in predictions of extinction risk. Nature 430:34

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD, Dawson TP (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Chang Biol 14:1089–1103

    Article  Google Scholar 

  • Walther GR (2004) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: Species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the EC FP6 EcoChange (Challenges in Assessing and Forecasting Biodiversity and Ecosystem Changes in Europe, no. 066866 GOCE) project. Thanks to N. Zimmermann and A. Guisan for the data loggers, E. Hiltbrunner for logistical support and two anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Scherrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherrer, D., Schmid, S. & Körner, C. Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int J Biometeorol 55, 645–654 (2011). https://doi.org/10.1007/s00484-010-0364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0364-7

Keywords

Navigation