Skip to main content
Log in

Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Insect dynamics depend on temperature patterns, and therefore, global warming may lead to increasing frequencies and intensities of insect outbreaks. The aim of this work was to analyze the dynamics of the olive fruit fly, Bactrocera oleae (Rossi), in Tuscany (Italy). We profited from long-term records of insect infestation and weather data available from the regional database and agrometeorological network. We tested whether the analysis of 13 years of monitoring campaigns can be used as basis for prediction models of B. oleae infestation. We related the percentage of infestation observed in the first part of the host-pest interaction and throughout the whole year to agrometeorological indices formulated for different time periods. A two-step approach was adopted to inspect the effect of weather on infestation: generalized linear model with a binomial error distribution and principal component regression to reduce the number of the agrometeorological factors and remove their collinearity. We found a consistent relationship between the degree of infestation and the temperature-based indices calculated for the previous period. The relationship was stronger with the minimum temperature of winter season. Higher infestation was observed in years following warmer winters. The temperature of the previous winter and spring explained 66 % of variance of early-season infestation. The temperature of previous winter and spring, and current summer, explained 72 % of variance of total annual infestation. These results highlight the importance of multiannual monitoring activity to fully understand the dynamics of B. oleae populations at a regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adua M (2010) Continua a crescere la filiera degli oli DOP e IGP. L’Informatore Agrario 12:26–31

    Google Scholar 

  • Allen C (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56. FAO, Rome

    Google Scholar 

  • Andersen JA, McCullough DG, Potter BE, Koller CN, Bauer LS, Lusch DP, Rammd CW (2001) Effects of winter temperatures on gypsy moth egg masses in the Great Lakes region of the United States. Agric For Meteorol 110:85–100

    Article  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  CAS  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Richard L, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Bartolini G, Messeri A, Grifoni D, Mannini D, Orlandini S (2014) Recent trends in seasonal and annual precipitation indices in Tuscany (Italy). Theor Appl Climatol 118:147–157

    Article  Google Scholar 

  • Boyce MS, Haridas CV, Lee CT (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Article  Google Scholar 

  • Broufas GD, Pappas ML, Koveos DS (2009) Effect of relative humidity on reproduction, longevity and ovarian maturation of the tephritid fly Bactocera (Dacus) oleae. Ann Entomol Soc Am 102:70–75

    Article  Google Scholar 

  • Burrack HJ, Zalom FG (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. J Econ Entomol 101:750–758

    Article  Google Scholar 

  • Burrack HJ, Connell JH, Zalom FG (2008) Comparison of olive fruit fly (Bactrocera oleae (Gmelin)) (Diptera: Tephritidae) captures in several commercial traps in California. Int J Pest Manag 54:227–234

    Article  CAS  Google Scholar 

  • Cattadori IM, Haydon DT, Hudson PJ (2005) Parasites and climate synchronize red grouse populations. Nature 433:737–741

    Article  CAS  Google Scholar 

  • Chesi F, Quaglia F (1982) Ricerche sulle metodologie di campionamento per la valutazione dell’infestazione dacica. Confronto delle varianze in un campione ampio e in uno ridotto. Studi preliminari in due anni di sperimentazione condotti ad Asciano Pisa (1980-1981). Frustula Entomol 18:243–254

    Google Scholar 

  • Chessa PA, Delitala MS (1997) Objective mesoscale analysis of daily extreme temperatures of Sardinia (Italy) using distance from sea as independent variable. Int J Clim 17:1467–1485

    Article  Google Scholar 

  • Crovetti A, Quaglia F, Loi G, Rossi E, Malfatti P, Chesi F, Conti B, Belcari A, Raspi A, Paparatti B (1982) Influence of temperature and humidity on the development of the immature stages of Dacus oleae (Gmelin). Frustula Entomol 5:133–166

    Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Gonçalves MF, Torres ML (2011) The use of the cumulative degree-days to predict olive fly, Bactrocera oleae (Rossi), activity in traditional olive groves from the northeast of Portugal. J Pest Sci 84:187–197

    Article  Google Scholar 

  • Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217

    Article  Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hullé M, Maurice D, Rounsevell MD, Cocu N, European Union Examine Consortium (2007) Environmental change and the phenology of European aphids. Global Change Biol 13:1550–1564

    Article  Google Scholar 

  • Hatherly IS, Hart AJ, Tullett AGT, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biocontrol agents in the UK. Biocontrol 50:687–698

    Article  Google Scholar 

  • Hódar JA, Zamora R, Cayuela L (2012) Climate change and the incidence of a forest pest in Mediterranean ecosystems: can be North Atlantic Oscillation be used as a predictor? Clim Change 113:699–711

    Article  Google Scholar 

  • Hodgson JA, Moilanen A, Wintle BA, Thomas CD (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152

    Article  Google Scholar 

  • http://www.regione.toscana.it/exporurale/filiere/olivicoltura Accessed August 2015

  • Huang J, Li J (2015) Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Int J Biometeorol 59:863–876

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p.

  • Johnson MW, Wang XG, Nadel H, Opp SB, Patterson KL, Stewart–Leslie J, Daane KM (2011) High temperature affects olive fruit fly populations in California’s Central Valley. Calif Agric 65:29–33

    Article  Google Scholar 

  • Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334

    Article  Google Scholar 

  • Kounatidis I, Papadopoulos NT, Mavragani-Tsipidou P, Cohen Y, Tertivanidis K, Nomikou M, Nestel D (2008) Effect of elevation on spatio-temporal patterns of olive fruit fly (Bactrocera oleae) populations in northern Greece. J Appl Entomol 132:722–733

    Article  Google Scholar 

  • Koveos DS, Tzanakakis ME (1990) Effect of the presence of olive fruit on ovarian maturation in the olive fruit fly, Dacus oleae, under laboratory conditions. Ent Exp Appl 55:161–168

    Article  Google Scholar 

  • Langvatn R, Albon SD, Burkey T, Clutton-Brock TH (1996) Climate, plant phenology and variation in age at first reproduction in a temperate herbivore. J Anim Ecol 65:653–670

    Article  Google Scholar 

  • Leather SR (1993) Overwintering in six arable aphid pests: a review with particular relevance to pest management. J Appl Entomol 116:217–233

    Article  Google Scholar 

  • Lindbald M, Solbreck C (1998) Predicting Oscinella frit population densities from suction trap catches and weather data. J Appl Ecol 35:871–881

    Article  Google Scholar 

  • Metzidakis I, Martinez-Vilela A, Castro Nieto G, Basso B (2008) Intensive olive orchards on sloping land: good water and pest management are essential. J Environ Manage 89:120–128

    Article  CAS  Google Scholar 

  • Moonen AC, Ercoli L, Mariotti M, Masoni A (2002) Climate change in Italy indicated by agrometeorological indices over 122 years. Agric For Meteorol 111:13–27

    Article  Google Scholar 

  • Neuenschwander P, Michelakis S, Bigler F (1981) Abiotic factors affecting mortality of Dacus oleae larvae and pupae in the soil. Ent Exp et Appl 30:1–9

    Article  Google Scholar 

  • Niccolai M, Marchi S (2005) Il clima della Toscana. RaFT 2005: Rapporto sullo Stato delle Foreste in Toscana – Sherwood 124 (7/06), suppl. n. 2, pp 16-21.

  • O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Meth Ecol Evol 1:118–122

    Article  Google Scholar 

  • Orsini MA, Daane KM, Sime KR, Nelson EH (2007) Mortality of olive fruit fly pupae in California. Biocontrol Sci Tech 17:797–807

    Article  Google Scholar 

  • Pereira-Castro I, Van Asch B, Trindade Rei F, Teixeira Da Costa L (2015) Bactrocera oleae (Diptera: Tephritidae) organophosphate resistance alleles in Iberia: recent expansion and variable frequencies. Eur J Entomol 112:20–26

    Google Scholar 

  • Petacchi R, Marchi S, Federici S, Ragaglini G (2015) Large-scale simulation of temperature-dependent phenology in wintering populations of Bactrocera oleae (Rossi). J Appl Entomol, in press. doi: 10.1111/jen.12189

  • Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. PNAS 111:5598–5603

    Article  CAS  Google Scholar 

  • Porter JH, Parry M, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Quaglia F, Malfatti P, Conti B (1981) Modalità diverse per la valutazione dell’infestazione dacica. Esame preliminare dei risultati ottenuti nella sperimentazione condotta nel 1980 in Toscana. Frustula Entomol 17:267–276

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Available from URL: http://www.R-project.org/

    Google Scholar 

  • Ragaglini G, Tomassone D, Petacchi R (2005) Can spring-preventive adulticide treatments be assumed to improve Bactrocera oleae (Rossi) management? IOBC/wprs Bulletin 30:309–314

    Google Scholar 

  • Régnière J, Powell J, Bentz B, Nealis V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647

    Article  Google Scholar 

  • Ricciolini M, Guidotti D (2004) «AgroAmbiente.Info» mette in contatto agricoltori e tecnici. L’Informatore Agrario 17:67–70

    Google Scholar 

  • Rosenheim JA, Parsa S, Forbes AA, Krimmel WA, Law YH, Segoli M, Segoli M, Sivakoff FS, Zaviezo T, Gross K (2011) Ecoinformatics for integrated pest management: expanding the applied insect ecologist’s tool-kit. J Econ Entomol 104:331–342

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Global Change Biol 6:407–416

    Article  Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman & Hall, London

    Book  Google Scholar 

  • Skouras PJ, Margaritopoulos JT, Seraphides NA, Ioannides IM, Kakani EG, Mathiopoulos KD, Tsitsipis JA (2007) Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. Pest Manag Sci 63:42–48

    Article  CAS  Google Scholar 

  • Solbreck C (1995) Variable fortunes in a patchy landscape—the habitat templet of an insect migrant. Res Popul Ecol 37:129–134

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (1989) Using multivariate statistics, 2nd edn. Harper and Row, New York

    Google Scholar 

  • Tognetti R, D’andria R, Lavini A, Morelli G (2006) The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs. Frantoio and Leccino). Eur J Agron 25:356–364

    Article  Google Scholar 

  • Wang XG, Johnson MW, Daane KM, Nadel H (2009a) High summer temperatures affect survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environ Entomol 38:1496–1504

    Article  CAS  Google Scholar 

  • Wang XG, Johnson MW, Daane KM, Opp SB (2009b) Combined effects of heat stress and food supply on flight performance of olive fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102:727–734

    Article  Google Scholar 

  • Wang XG, Levy K, Nadel H, Johnson MW, Blanchet A, Argov Y, Pickett CH, Daane KM (2013) Overwintering survival of olive fruit fly (Diptera: Tephritidae) and two introduced parasitoids in California. Environ Entomol 42:467–476

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem Cycles 11:217–234

    Article  CAS  Google Scholar 

  • Yokoyama VY, Wang XG, Aldana A, Cáceres CE, Rendón PA, Johnson MW, Daane KM (2012) Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environ Entomol 41:497–507

    Article  Google Scholar 

  • Zhou X, Harrington R, Woiwod IP, Perry JN, Bale JS, Clark SJ (1995) Effects of temperature on aphid phenology. Global Change Biol 1:303–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Marchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Guidotti, D., Ricciolini, M. et al. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Int J Biometeorol 60, 1681–1694 (2016). https://doi.org/10.1007/s00484-016-1159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1159-2

Keywords

Navigation