Skip to main content
Log in

Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Male gametophyte development leading to the formation of a mature pollen grain is precisely controlled at various levels, including transcriptional, post-transcriptional and post-translational, during its whole progression. Transcriptomic studies exploiting genome-wide microarray technologies revealed the uniqueness of pollen transcriptome and the dynamics of early and late successive global gene expression programs. However, the knowledge of transcription regulation is still very limited. In this study, we focused on the identification of pollen-expressed transcription factor (TF) genes involved in the regulation of male gametophyte development. To achieve this, the reverse genetic approach was used. Seventy-four T-DNA insertion lines were screened, representing 49 genes of 21 TF families active in either early or late pollen development. In the screen, ten phenotype categories were distinguished, affecting various structural or functional aspects, including pollen abortion, presence of inclusions, variable pollen grain size, disrupted cell wall structure, cell cycle defects, and male germ unit organization. Thirteen lines were not confirmed to contain the T-DNA insertion. Among 61 confirmed lines, about half (29 lines) showed strong phenotypic changes (i.e., ≥25% aberrant pollen) including four lines that produced a remarkably high proportion (70–100%) of disturbed pollen. However, the remaining 32 lines exhibited mild defects or resembled wild-type appearance. There was no significant bias toward any phenotype category among early and late TF genes, nor, interestingly, within individual TF families. Presented results have a potential to serve as a basal information resource for future research on the importance of respective TFs in male gametophyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCP:

Bicellular pollen

MGU:

Male germ unit

MPG:

Mature pollen grain

SAIL:

Syngenta Arabidopsis insertion library

TCP:

Tricellular pollen

TF:

Transcription factor

UNM:

Unicellular microspore

ZFP:

Zinc finger protein

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk BJ, Fernandes DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Phys 149:1713–1723

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Weisse TJ, Kim CJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, root and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7

    Article  CAS  Google Scholar 

  • Bateman A, Finn RD, Sims PJ, Wiedmer T, Biegert A, Söding J (2008) Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics 2:159–162

    Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in Arabidopsis thaliana genome. Plant Cell 12:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L (1999) Implication of tubby proteins as transcription factors by a structure-based functional analysis. Science 2:2119–2125

    Article  Google Scholar 

  • Bonhomme S, Horlow C, Vezon D, de Laissardiere S, Guyon A, Ferault M, Marchand M, Bechtold N, Pelletier G (1998) T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol Gen Genet 260:444–452

    Article  PubMed  CAS  Google Scholar 

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Op Plant Biol 4:111–117

    Article  Google Scholar 

  • Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5:e1000430

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105

    Article  PubMed  CAS  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-CS, McCormick S (1996) Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243–3253

    PubMed  CAS  Google Scholar 

  • Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng X, Chen Z, Gu H, Qu L (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Chen NZ, Zhang XQ, Wei PC, Chen QJ, Ren F, Chen J, Wang XC (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol 40:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440

    Article  PubMed  CAS  Google Scholar 

  • Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347

    Article  PubMed  CAS  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25

    Article  Google Scholar 

  • de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • de Winde JH, Grivell LA (1993) Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 46:51–91

    Article  PubMed  Google Scholar 

  • Dinneny JR, Weigel D, Yanofsky MF (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development 133:1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  PubMed  CAS  Google Scholar 

  • Dupl’áková N, Reňák D, Hovanec P, Honysová B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP)-user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39

    Article  PubMed  CAS  Google Scholar 

  • Durbarry A, Vizir I, Twell D (2005) Male germ line development in Arabidopsis duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol 137:297–307

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Murray JAH, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA, Coury DA, Christianson ML (1997) Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 47:1411–1422

    Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Shchennikova AV, Franken J, Immink RGH, Angenent GC (2006) Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol 140:890–898

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (1992) Quantitation of GUS activity by fluorometry. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, New York, pp 47–59

    Google Scholar 

  • Gibalová T, Reňák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70:581–601

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Phys 131:1855–1867

    Article  CAS  Google Scholar 

  • Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, Jurgens G, Hulskamp M (1999) Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 151:849–863

    PubMed  CAS  Google Scholar 

  • Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E, Sainz MB, Tagliani L, Hernandez LM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. PNAS USA 97:13579–13584

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic response element. Science 250:267–271

    Article  PubMed  CAS  Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  PubMed  CAS  Google Scholar 

  • Hafidh S, Čapková V, Honys D (2011) Safe keeping the message: mRNP complexes tweaking after transcription. Adv Exp Med Biol 722:118–136

    Article  PubMed  Google Scholar 

  • Hall LN, Rossini L, Cribb L, Langdale JA (1998) GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cells 10:925–936

    CAS  Google Scholar 

  • Higginson T, Song F, Parish R (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Article  PubMed  CAS  Google Scholar 

  • Hong EH, Jeong YM, Ryu JY, Amasino RM, Noh B, Noh YS (2009) Temporal and spatial expression patterns of nine Arabidopsis genes encoding Jumonji C-domain proteins. Mol Cells 27:481–490

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Honys D, Reňák D, Twell D (2006) Male gametophyte development and function. In: Floriculture, ornamental and plant biotechnology: advances and topical issues I. Global Science Books, UK, pp 76–87

  • Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářová J, Dobrev P, Čapková V (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res 8:2015–2031

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 14:621–631

    Google Scholar 

  • Hoyt MA (1997) Eliminating all obstacles: regulated proteolysis in the eukaryotic cell cycle. Cell 91:149–151

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and required for pollen maturation. Plant Cell Physiol 3:1285–1292

    Article  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Mayerowitz EM (2004) The homeotic protein AGAMOUS control microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  PubMed  CAS  Google Scholar 

  • Iven T, Strathmann A, Bottner S, Zwafink T, Heinekamp T, Guivarc’h A, Roitsch T, Droge-Laser W (2010) Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J 63:155–166

    PubMed  CAS  Google Scholar 

  • Jacoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann JJ, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982

    Article  PubMed  CAS  Google Scholar 

  • Kang SG, Price J, Lin PC, Hong JC, Jang JC (2010) The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol Plant 3:361–373

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Takatsuji H (2006) Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. Plant Mol Biol 6:415–430

    Article  CAS  Google Scholar 

  • Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367

    Article  PubMed  CAS  Google Scholar 

  • Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Krner C, Kull M, Torrente A, Sarkans U, Vilo J, Brazma A (2004) Expression profiler: next generation-an online platform for analysis of microarray data. Nucleic Acids Res 32:W465–W470 (Web Server issue)

    Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723

    Article  PubMed  CAS  Google Scholar 

  • Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM (2005) The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth. Dev Biol 285:91–100

    Article  PubMed  CAS  Google Scholar 

  • Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134:1586–1597

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Twell D (2002) Genetic control of male germ unit organization in Arabidopsis. Plant Physiol 129:865–875

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J-P, Grossniklaus U, Twell D (2004) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975–1986

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. PNAS 100:2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001a) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. PNAS 98:31–36

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001b) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2 (research 0032.1-11)

  • Li N, Yuan L, Liu N, Shi D, Li X, Tang Z, Liu J, Sundaresan V, Yang VC (2009) SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiol 151:1486–1497

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Howell SH (2010) bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22:782–796

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Li B, Cui X, Liu C, Wang XJ, Cao X (2008) Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol 50:886–896

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  PubMed  CAS  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  PubMed  CAS  Google Scholar 

  • Masiero S, Imbriano C, Ravasio F, Favaro R, Pelucchi N, Gorla MS, Mantovani R, Colombo L, Kater MM (2002) Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J Biol Chem 277:26429–26435

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61:13–30

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle KJ, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous Jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2004) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  CAS  Google Scholar 

  • Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140:818–829

    Article  PubMed  CAS  Google Scholar 

  • Parinov S, Sundaresan V (2000) Functional genetics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11:157–161

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen 1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799

    PubMed  CAS  Google Scholar 

  • Park SK, Rahman D, Oh SA, Twell D (2004) Gemini pollen 2, a male and female gametophytic cytokinesis defective mutation. Sex Plant Reprod 17:63–70

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Polit JT, Maszewski J, Kazmierczak A (2003) Effect of BAP and IAA on the expression of G1 and G2 control points and G1-S and G2-M transitions in root meristem cells of Vicia faba. Cell Biol Int 27:559–566

    Article  PubMed  CAS  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  CAS  Google Scholar 

  • Rhee SY, Somerville CR (1998) Tetrad pollen formation in quarted mutants of Arabidipsis thaliana is associated with persistence of pectic polysaccharides of pollen mother cell wall. Plant J 15:79–88

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The Maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  CAS  Google Scholar 

  • Schiefhaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organs development in Arabidodpsis thaliana. PNAS 96:11664–11669

    Article  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho THD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Shigyo M, Hasebe M, Ito M (2006) Molecular evolution of the AP2 subfamily. Gene 366:256–265

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman DL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang PC, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  PubMed  CAS  Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Zhou D (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. PNAS 105:13679–13684

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C (2006) RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61:165–177

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  PubMed  CAS  Google Scholar 

  • Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160

    Article  PubMed  Google Scholar 

  • Twell D, Oh S-A, Honys D (2006) Pollen development, a genetic and transcriptomic view. In: Malho R (ed) The pollen tube: a cellular and molecular perspective, plant cell monographs, vol 3. Springer, Berlin, pp 15–45

    Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249

    Article  PubMed  CAS  Google Scholar 

  • Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplication: a case study in MADS-box proteins. Mol Biol Evol 24:670–678

    Article  PubMed  CAS  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008a) Geneome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9:44

    Article  CAS  Google Scholar 

  • Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008b) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Droge-Laser S (2009) Expression pattern within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69:107–119

    Article  PubMed  CAS  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Gourrierec JL, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Marroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999a) The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. PNAS 96:11416–11421

    Article  PubMed  CAS  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999b) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM(DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    Article  PubMed  CAS  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 6:2021–2031

    Article  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Zou CS, Wenbo J, Diqiu Y (2010) Male gametophyte-specific WRKY34 transcriptional factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (KJB600380701), the Czech Science Foundation (522/09/0858) and the Ministry of Education, Youth and Sports of the Czech Republic (OC10054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Honys.

Additional information

Communicated by Scott Russell.

David Reňák and Nikoleta Dupl’áková equally contribute to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

497_2011_178_MOESM1_ESM.xls

Supplementary Table 1. Expression values and detection calls of selected genes in male gametophytic and sporophytic tissues. Sporophytic datasets were downloaded from the aGFP database (Dupl’áková et al. 2007). Gametophytic datasets were downloaded from public repositories and correspond to following publications: Honys (Honys and Twell, 2004), Pina (Pina et al., 2005), Zimmermann, (Zimmermann et al., 2004), Borges (Borges et al., 2008), Qin (Qin et al., 2009), and Wang (Wang et al. 2008a, 2008b). Datasets are labeled as follows: UNM, uninucleate microspore; BCP, bicellular pollen; TCP, tricellular pollen; MPG, mature pollen grain; SPC, sperm cell; GP30, pollen germinated for 30 min; GP45, pollen germinated for 45 min; PT4, pollen tubes grown in vitro for 4 h; PT8, semi in vitro cultivated pollen tubes – 3 h in pistil, 5h in vitro; SL, seedlings; WP, whole plant; LF, leaves; PT, petiole; ST, stem; RT, roots; RH, root hair elongation zone; SU, suspension cell cultures. (XLS 66 kb)

497_2011_178_MOESM2_ESM.doc

Supplementary Table 2. The complete list of 49 early and late TF genes and corresponding 74 T-DNA insertion lines with marked position of insertion sites and sequence of the appropriate F and R PCR primers. (DOC 96 kb)

497_2011_178_MOESM3_ESM.doc

Supplementary Table 3. Summary of pollen phenotype of segregated wild-type plants in the progeny of heterozygous plants (self-cross) for respective T-DNA lines.. The numbers represent the percent proportion of pollen phenotypic defects observed in each phenotype category.(DOC 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reňák, D., Dupl’áková, N. & Honys, D. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis . Sex Plant Reprod 25, 39–60 (2012). https://doi.org/10.1007/s00497-011-0178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-011-0178-8

Keywords

Navigation