Skip to main content
Log in

Design of a flight control architecture using a non-convex bundle method

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We design a feedback control architecture for longitudinal flight of an aircraft. The multi-level architecture includes the flight control loop to govern the short-term dynamics of the aircraft, and the autopilot to control the long-term modes. Using \(H_\infty \) performance and robustness criteria, the problem is cast as a non-convex and non-smooth optimization program. We present a non-convex bundle method, prove its convergence, and show that it is apt to solve the longitudinal flight control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tischler MB (1996) Advances in aircraft flight control. Taylor & Francis, Bristol

    Google Scholar 

  2. Stevens BL, Lewis FL (1992) Aircraft control and simulation. Wiley, New York

    Google Scholar 

  3. Apkarian P, Noll D, Prot O (2008) A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM J Optim 19(1):281–306

    Article  MathSciNet  MATH  Google Scholar 

  4. Noll D, Prot O, Rondepierre A (2008) A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pacific J Optim 4(3):569–602

    MathSciNet  Google Scholar 

  5. Noll D (2010) Cutting plane oracles to minimize nonsmooth and nonconvex functions. J Set-Valued Variat Anal 18(3–4):531–568

    Article  MathSciNet  MATH  Google Scholar 

  6. Apkarian P, Noll D (2006) Nonsmooth \({H}_\infty \) synthesis. IEEE Trans Autom Control 51(1):71–86

    Article  MathSciNet  Google Scholar 

  7. Polak E (1997) Optimization: algorithms and consistent approximations. Spinger, Berlin

    MATH  Google Scholar 

  8. Apkarian P, Noll D, Rondepierre A (2008) Mixed \({H}_2/{H}_\infty \) control via nonsmooth optimization. SIAM J Control Optim 47(3):1516–1546

    Article  MathSciNet  MATH  Google Scholar 

  9. Alazard D (2002) Robust \({H}_2\) design for lateral flight control of a highly flexible aircraft. J Guidance Control Dyn 25(6):502–509

    Article  Google Scholar 

  10. Apkarian P, Noll D (2006) Nonsmooth optimization for multidisk \({H}_\infty \) synthesis. Eur J Control 12(3):229–244

    Article  MathSciNet  Google Scholar 

  11. Apkarian P, Noll D (2007) Nonsmooth optimization for multiband frequency domain control design. Automatica 43(4):724–731

    Article  MathSciNet  MATH  Google Scholar 

  12. Spingarn JE (1981) Submonotone subdifferentials of Lipschitz functions. Trans Am Math Soc 264:77–89

    Article  MathSciNet  MATH  Google Scholar 

  13. Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Georgiev P, Daniilidis A (2004) Approximate convexity and submonotonicity. J Math Anal Appl 291:117–144

    MathSciNet  Google Scholar 

  15. Boyd S, Balakrishnan V (1990) A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \({L}_\infty \)-norm. Syst Control Lett 15:1–7

    Article  MathSciNet  MATH  Google Scholar 

  16. Bompart V, Noll D, Apkarian P (2007) Second order non smooth optimization for feedback control. Numer Math 107(3):433–454

    Article  MathSciNet  MATH  Google Scholar 

  17. Burke JV, Lewis AS, Overton ML (2002) Two numerical methods for optimizing matrix stability. Linear Algebra Appl 351–352:117–145

    Article  MathSciNet  Google Scholar 

  18. Blondel V, Tsitsiklis J (1997) NP-hardness of some linear control design problems. SIAM J Control Optim 35(6):2118–2127

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Financial support by Fondation de Recherche pour l’Aéronautique et l’Espace (FNRAE) under research grant Survol and by Fondation d’Entreprise EADS (FEADS) under research grant Technicom is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Noll.

Appendix

Appendix

The numerical data for the specific flight point Mach\(=0.7\), Altitude\(=5000\,ft\) used in (5) are

$$\begin{aligned}&A= \left[\!\! \begin{array}{lllll} -0.0120&-9.8040&-14.8800&0&0 \\ 0.0004&0&0.8524&0&-0.0000 \\ -0.0004&0&-0.8524&1.0000&0.0000 \\ 0&0&-2.6650&-0.2783&0\\ 0&234.1000&0&0&0\end{array}\!\!\right], \\&B= \left[\!\!\begin{array}{ll} 4.9580&0\\ 0&0.3113 \\ 0&-0.3113 \\ 0&-4.9360 \\ 0&0 \end{array}\!\!\right], \\&C=\left[ \!\!\begin{array}{lllll} 1.0000&0&0&0&0 \\ 0&1.0000&0&0&0 \\ 0.0085&0&13.5409&-0.7092&-0.0001 \\ 0&0&0&1.0000&0 \\ 0&0&0&\,&1.0000 \end{array}\!\! \right], \\&D = \left[\!\! \begin{array}{ll} 0&0 \\ 0&0 \\ 0&-5.1535 \\ 0&0 \\ 0&0 \end{array} \!\!\right]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabarrou, M., Alazard, D. & Noll, D. Design of a flight control architecture using a non-convex bundle method. Math. Control Signals Syst. 25, 257–290 (2013). https://doi.org/10.1007/s00498-012-0093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0093-z

Keywords

Navigation