Skip to main content
Log in

An explicit state-space solution to the one-block super-optimal distance problem

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

An explicit state-space approach is presented for solving the super-optimal Nehari-extension problem. The approach is based on the all-pass dilation technique developed in (Jaimoukha and Limebeer in SIAM J Control Optim 31(5):1115–1134, 1993) which offers considerable advantages compared to traditional methods relying on a diagonalisation procedure via a Schmidt pair of the Hankel operator associated with the problem. As a result, all derivations presented in this work rely only on simple linear-algebraic arguments. Further, when the simple structure of the one-block problem is taken into account, this approach leads to a detailed and complete state-space analysis which clearly illustrates the structure of the optimal solution and allows for the removal of all technical assumptions (minimality, multiplicity of largest Hankel singular value, positive-definiteness of the solutions of certain Riccati equations) made in previous work (Halikias et al. in SIAM J Control Optim 31(4):960–982, 1993; Limebeer et al. in Int J Control 50(6):2431–2466, 1989). The advantages of the approach are illustrated with a numerical example. Finally, the paper presents a short survey of super-optimization, the various techniques developed for its solution and some of its applications in the area of modern robust control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gahinet P, Scherer C, Chilali M (1997) Multiobjective output feedback control via LMI optimization. IEEE Trans Autom Control 42(7):896–911

    Article  MathSciNet  MATH  Google Scholar 

  2. Davies R, Halikias GD (1998) \({{\cal H_{\infty }}/{{\cal H}}_{2}}\) hierarchical control: the 2-block problem. Int J Control 70(6):965–1017

    Article  MathSciNet  MATH  Google Scholar 

  3. Foo YK (2004) Strengthened \({\cal {H}_{\infty }}\) control via state feedback: a majorization approach using algebraic Riccati inequalities. IEEE Trans Autom Control 49(5):824–827

    Article  MathSciNet  Google Scholar 

  4. Francis BA (1987) A course in \({\cal H_{\infty }}\) control theory, vol 88. Springer, New York

    Book  MATH  Google Scholar 

  5. Gungah SK, Halikias GD, Jaimoukha IM (2000) Maximally robust controllers for multivariable systems. SIAM J Control Optim 38(6):1805–1829

    Google Scholar 

  6. Green M, Limebeer DJN (1995) Linear robust control. Information and system sciences series. Prentice-Hall, Englewood

    Google Scholar 

  7. Glover K, Limebeer DJN, Doyle JC, Kasenally EM, Safonov MG (1991) A characterization of all solutions to the four block general distance problem. SIAM J Control Optim 29(2):283–324

    Article  MathSciNet  MATH  Google Scholar 

  8. Glover K (1984) All optimal Hankel-norm approximations of linear multivariable systems and their \({\cal {L}_{\infty }}\) error bounds. Int J Control 39:1115–1193

    Article  MathSciNet  MATH  Google Scholar 

  9. Glover K (1989) A tutorial on Hankel norm-approximation, ch. From data to model. Springer, New York, pp 26–48

    Book  Google Scholar 

  10. Gombani A (1995) On the Schmidt pairs of multivariable Hankel operators and robust control. Linear Algebra Appl 223(224):243–265

    Article  MathSciNet  Google Scholar 

  11. Da-Wei G, Mi-Ching T, Postlethwaite I (1989) An algorithm for super-optimal \({\cal {H}_{\infty }}\) design:the two-block case. Automatica 25(2):215–221

    Google Scholar 

  12. Da-Wei G, Mi-Ching T, Postlethwaite I (1990) A frame approach to the \({\cal {H}_{\infty }}\) superoptimal solution. IEEE Trans Autom Control 35(7):829–835

    Google Scholar 

  13. Halikias GD (1993) An affine parametrisation of all one-block H-infinity optimal matrix interpolating functions. Int J Control 57:1421–1441

    Article  MathSciNet  MATH  Google Scholar 

  14. Halikias GD, Jaimoukha IM (1998) Hierarchical optimisation in \({\cal {H}_{\infty }}\). IEEE Trans Autom Control 43(8):1123–1128

    Article  MathSciNet  MATH  Google Scholar 

  15. Halikias GD, Jaimoukha IM (1998) The two-block superoptimal AAK problem. Math Control Signals Syst 11:244–264

    Article  MathSciNet  MATH  Google Scholar 

  16. Halikias GD, Jaimoukha IM, Wilson DA (1997) A numerical solution to the matrix \({\cal {H}_{\infty }/\cal {H}\cal _{2}}\) optimal control problem. Int J Robust Nonlinear Control 7:711–726

    Google Scholar 

  17. Halikias GD, Limebeer DJN, Glover K (1993) A state-space algorithm for the super-optimal Hankel-norm approximation problem. SIAM J Control Optim 31(4):960–982

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwasaki T, Skelton RE (1994) All controllers for the general control problem: LMI existence conditions and state space formula. Automatica 30:1307–1317

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaimoukha IM, Halikias GD, Malik U, Gungah SK (2006) On the gap between the complex structured singular value and its convex upper bound. SIAM J Control Optim 45(4):1251–1278

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaimoukha IM, Limebeer DJN (1993) A state-space algorithm for the solution of the two-block superoptimal problem. SIAM J Control Optim 31(5):1115–1134

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiskiras J, Halikias GD, Jaimoukha IM (2007) Robust stabilization of multivariable systems under coprime factor perturbations: directionality and super-optimization. European Control Conference, July 2007

  22. Kimura H (1997) Chain-scattering approach to \({\cal {H}_{\infty }}\)-control, systems and control: foundations and applications. Birkhauser, Boston

    Book  Google Scholar 

  23. Kwakernaak H, Nyman PO (1989) An equalizing approach to super-optimization. In: Proceedings 1989 IEEE International Conference on Control and Applications, Jerusalem (1989)

  24. Kwakernaak H (1986) A polynomial approach to minimax frequency domain optimization of multivariable feedback systems. Int J Control 44:117–156

    Article  MathSciNet  MATH  Google Scholar 

  25. Limebeer DJN, Halikias GD, Glover K (1988) A state-space algorithm for the computation of super-optimal matrix interpolating functions. In: Byrnes CI, Martin CF, Saeks RE (eds) Linear circuits, systems and signal processing: theory and applications. Elsevier Science Publishers, North-Holland, New York

  26. Limebeer DJN, Halikias GD, Glover K (1989) A state-space algorithm for the computation of super-optimal matrix interpolating functions. Int J Control 50(6):2431–2466

    Article  MathSciNet  MATH  Google Scholar 

  27. Nehari Z (1957) On bounded bilinear forms. Ann Math 15(1):153–162

    Article  MathSciNet  Google Scholar 

  28. Nyman PO (1994) Super-optimization of four-block problems via the equalizer principle. SIAM J Optim Control 32(1):86–115

    Article  MathSciNet  MATH  Google Scholar 

  29. Nyman PO (1995) Improving robustness by super-optimization. European Control Conference, Rome, pp 1039–1044

  30. Nyman PO (199) Multidirectional optimal robustness under gap and coprime factor uncertainties. In: Proceedings of the 38th Conference on Decision and Control, pp 3617–3620

  31. Peller VV (2003) Hankel operators and their applications. Springer monographs in mathematics. Springer, New York

    Book  Google Scholar 

  32. Postlethwaite I, Foo YK (1985) All solutions, all-pass form solutions and the “best” solutions to an \({\cal {H}_{\infty }}\) optimization problem in robust control. Syst Control Lett 7:261–268

    MathSciNet  Google Scholar 

  33. Postlethwaite I, Tsai M-C, Gu D-W (1989) A state-space approach to discrete-time super-optimal \({\cal {H}_{\infty }}\) control problems. Int J Control 49(9):247–268

    MathSciNet  MATH  Google Scholar 

  34. Peller VV, Young NJ (1996) Superoptimal approximations by meromorphic functions. Math Proc Camb Phil Soc 119:497–511

    Article  MathSciNet  MATH  Google Scholar 

  35. Tsai M-C, Gu D-W, Postlethwaite I (1988) A state-space approach to super-optimal \({\cal {H}_{\infty }}\) control problems. IEEE Trans Autom Control 33(9):833–843

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsai M-C, Gu DW, Postlethwaite I, Anderson BDO (1990) Inner functions and a pseudo-singular-value decomposition in super-optimal \({\cal {H}^{\infty }}\) control. Int J Control 51:1119–1131

    Article  MathSciNet  MATH  Google Scholar 

  37. Treil S (1995) On superoptimal approximations by analytic and meromorphic functions. J Funct Anal 131:386–414

    Article  MathSciNet  MATH  Google Scholar 

  38. Young NJ (1986) The Nevanlinna-Pick problem for matrix-valued functions. J Operator Theory 15:239–265

    MathSciNet  MATH  Google Scholar 

  39. Zhou K, Doyle JC, Glover K (1996) Robust and Optimal control. Prentice-Hall, Englewood

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Halikias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiskiras, J., Jaimoukha, I.M. & Halikias, G.D. An explicit state-space solution to the one-block super-optimal distance problem. Math. Control Signals Syst. 25, 167–196 (2013). https://doi.org/10.1007/s00498-012-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0097-8

Keywords

Navigation