Skip to main content
Log in

Control of shallow water and sediment continuity coupled system

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper presents an algebraic method to design a linear feedback control for regulating the water flow in open channels. We deal with a hyperbolic system of partial differential equations describing the behavior of the water flow and the sediment transport. By using an a priori estimation techniques and the Faedo–Galerkin method, we build a stabilizing boundary control. This control law ensures a decrease of the energy and convergence of the controlled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balogun OS, Hubbard M, De-Vries JJ (1988) Automatic control of canal flow using linear quadratic regulator theory. J Hydraulic Eng 114(1):75–102

    Article  Google Scholar 

  2. Callaghan DP, Saint-Cast F, Nielsen P, Ebaldock T (2006) Numerical solutions of the sediment conservation law: a review and improved formulation for coastal morphological modeling. Coastal Eng 53:557–571

    Article  Google Scholar 

  3. Castro-Diaz MJ, Nieto EDF, Ferreiro AM (2008) Sediment transport model in shallow water equations and numerical approach by high order finite volume methods. Comput Fluids 37:299–316

    Article  MathSciNet  MATH  Google Scholar 

  4. Cen LH, Xi YG (2009) Stability of boundary feedback control based on weighted Lyapunov function in networks of open channels. Acta Autom Sin 35(1):97–102

    Article  MathSciNet  Google Scholar 

  5. Coron J-M, d’Andréa-Novel B, Bastin G (2007) A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans Autom Control 52(1):2–11

    Article  Google Scholar 

  6. De-Halleux J, Prieur C, Coron J-M, d’Andréa-Novel B, Bastin G (2003) Boundary feedback control in networks of open-channels. Automatica 39:1365–1376

    Article  MATH  Google Scholar 

  7. Diagne A, Bastin G, Coron J-M (2012) Lyapunov exponential stability of linear hyperbolic systems of balance laws. Automatica 48(1):109–114

    Article  MathSciNet  MATH  Google Scholar 

  8. Dos-Santos V, Bastin G, Coron J-M, d’Andréa-Novel B (2008) Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments. Automatica 44(5):1310–1318

    Article  MathSciNet  Google Scholar 

  9. Durdu OF (2006) Control of transient flow in irrigation canals using Lyapunov fuzzy filter-based Gaussian regulator. Int J Numer Methods Fluids 50(4):491–509

    Article  MATH  Google Scholar 

  10. Feliu-Batlle V, Pérez RR, Rodriguez LS (2007) Fractional robust control of main irrigation canals with variable dynamic parameters. Control Eng Practice 15(6):673–686

    Article  Google Scholar 

  11. Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Gómez M, Rodellar J, Mantecòn JA (2002) Predictive control method for decentralized operation of irrigation canals. Appl Math Model 26(11):1039–1056

    Article  MATH  Google Scholar 

  13. Goudiaby M, Séne A, Kreiss G (2011) Irrigation: types, sources and problems. Book 3, ISBN:979-953-307-706-1

  14. Grass AJ (1981) Sediment transport by waves and currents. Technical report, SERC London, Cent. Mar. Technol, Report No. FL29

  15. Hudson J, Sweby P (2003) Formulations for numerically approximating hyperbolic systems governing sediment transport. J Sci Comput 19:225–252

    Article  MathSciNet  MATH  Google Scholar 

  16. Kubatko EJ, Westerink JJ, Dawson C (2006) An unstructured grid morphodynamic model with a discontinuous Galerkin method for bed evolution. Ocean Model 15:71–89

    Article  Google Scholar 

  17. Leugering G, Schmidt J-P (2002) On the modelling and stabilisation of flows in networks of open canals. SIAM J Control Optim 41(1):164–180

    Article  MathSciNet  MATH  Google Scholar 

  18. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics

  19. Litrico X, Fromion V (2006) \(H_{\infty }\) control of an irrigation canal pool with a mixed control politics. IEEE Trans Autom Control Syst Technol 14(1):99–111

    Article  Google Scholar 

  20. Malaterre PO (1998) Pilote: linear quadratic optimal controller for irrigation canals. J Irrig Drain Eng 124:187–194

    Article  Google Scholar 

  21. Malaterre PO, Rogers DC, Schuurmans J (1998) Classification of canal control algorithms. J Irrig Drain Eng ASCE 124:3–10

    Article  Google Scholar 

  22. Meyer-Peter E, Muller R (1948) Formula for bed-load transport. In: 2nd Meeting of the International Association of Hydraulic Structures Research (Stockholm 1948), pp 39–64

  23. Ndiaye N, Bastin G (2004) Commande frontiere adaptative d’un bief de canal avec prélévements inconnus. RS-JESA 38:347–372

    Article  Google Scholar 

  24. Parés C, Castro M (2004) On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. Math Model Numer Anal 38(5):821–852

    Google Scholar 

  25. Pognant-Gros P, Fromion V, Baume JP (2001) Canal controller design: a multivariable approach using \(H_\infty \). In: Proceedings of the European control conference (September 2001, Porto, Portugal), pp 3398–3403

  26. Prieur C, De-Halleux J (2004) Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst Control Lett 52(3–4):167–178

    Article  MathSciNet  MATH  Google Scholar 

  27. Reddy JM (1995) Kalman filtering in the control of irrigation canals. Appl Math Model 19(4):201–209

    Article  MATH  Google Scholar 

  28. Rijn V (1984) Sediment transport. Part 1: bed load transport. J Irrig Drain Eng ASCE 110:1431–1456

    Google Scholar 

  29. Séne A, Wane BA, Le-Roux DY (2008) Control of irrigation channels with variable bathymetry and time dependent stabilization rate. C R Acad Sci Paris Ser I 346:1119–1122

    Article  MATH  Google Scholar 

  30. Toumbou B, Le-Roux DY, Séne A (2007) An existence theorem for a 2-D coupled sedimentation shallow-water model. C R Acad Sci Paris 344(7):443–446

    Article  MATH  Google Scholar 

  31. Toumbou B, Le-Roux DY, Séne A (2008) A shallow-water sedimentation model with friction and Coriolis: an existence theorem. J Differ Equ 244:2020–2040

    Article  MATH  Google Scholar 

  32. Tsien LT (2004) Exact controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math Methods Appl Sci 27:1089–1114

    Article  MathSciNet  Google Scholar 

  33. Wang SSY, Wu W (2005) Computational simulation of river sedimentation and morphology: a review of the state of the art. Int J Sediment Res 20(1):7–29

    Google Scholar 

  34. Weyer E (2003) LQ control of irrigation channels. Decis Control 1:750–755

    Google Scholar 

  35. Xu CZ, Sallet G (2002) Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM Control Optim Calculus Var 7:421–442

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang CT (1996) Sediment transport theory and practice. McGraw-Hill, New York

    Google Scholar 

  37. Zabsonré JD, Lucas C, Nieto EFD (2009) An energitically consistent viscous sedimentation model. Math Models Methods Appl Sci 19(3):477–499

    Article  MathSciNet  MATH  Google Scholar 

  38. Zic C, Vukovic S, Sopta L (2003) Extension of ENO and WENO schemes to one dimensional sediment transport equations. Comput Fluids 33:31–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ababacar Diagne.

Additional information

This work is supported by grants from International Science Programme Program-Sweden, Aires-Sud Project-France, UMMISCO-IRD Project-France and Fond National Suisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diagne, A., Sène, A. Control of shallow water and sediment continuity coupled system. Math. Control Signals Syst. 25, 387–406 (2013). https://doi.org/10.1007/s00498-012-0101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0101-3

Keywords

Mathematics Subject Classification (2000)

Navigation