Skip to main content
Log in

Almost global asymptotic stability of a grid-connected synchronous generator

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study the global asymptotic behavior of a grid-connected constant field current synchronous generator (SG). The grid is regarded as an “infinite bus,” i.e., a three-phase AC voltage source. The generator does not include any controller other than the frequency droop loop. This means that the mechanical torque applied to this generator is an affine function of its angular velocity. The negative slope of this function is the frequency droop constant. We derive sufficient conditions on the SG parameters under which there exist exactly two periodic state trajectories for the SG, one stable and another unstable, and for almost all initial states, the state trajectory of the SG converges to the stable periodic trajectory (all the angles are measured modulo \(2\pi \)). Along both periodic state trajectories, the angular velocity of the SG is equal to the grid frequency. Our sufficient conditions are easy to check computationally. An important tool in our analysis is an integro-differential equation called the exact swing equation, which resembles a forced pendulum equation and is equivalent to our fourth-order model of the grid-connected SG. Apart from our objective of providing an analytical proof for a global asymptotic behavior observed in a classical dynamical system, a key motivation for this work is the development of synchronverters which are inverters that mimic the behavior of SGs. Understanding the global dynamics of SGs can guide the choice of synchronverter parameters and operation. As an application we find a set of stable nominal parameters for a 500-kW synchronverter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angeli D, Efimov D (2015) Characterizations of input-to-state s tability for systems with multiple invariant sets. IEEE Trans Autom Control 60(12):3242–3256

    Article  MATH  Google Scholar 

  2. Barabanov N, Schiffer J, Ortega R, Efimov D (2016) Almost global attractivity of a synchronous generator connected to an infinite bus. In: Proceedings of the 55th IEEE conference on decision and control, Las Vegas, December 2016

  3. Barabanov N, Schiffer J, Ortega R, Efimov D (2017) Conditions for almost global attractivity of a synchronous generator connected to an infinite bus. IEEE Trans Autom Control 62(10):4905–4916

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck HP, Hesse R (2007) Virtual synchronous machine. In: Proceedings of 9th international conference on electrical power quality and utilisation (EPQU), Barcelona, Spain, pp 1–6

  5. Brown E (2015) A study of the use of synchronverters for grid stabilization using simulations in SimPower. M.Sc. thesis, Tel Aviv University

  6. Caliskan SY, Tabuada P (2014) Compositional transient stability analysis of multimachine power networks. IEEE Trans Control Netw Syst 1:4–14

    Article  MathSciNet  MATH  Google Scholar 

  7. Demello FP, Concordia C (1969) Concepts of synchronous machine stability as affected by excitation control. IEEE Trans Power Appar Syst 88:316–327

    Article  Google Scholar 

  8. Dong S, Chi YN, Li Y (2016) Active voltage feedback control for hybrid multi-terminal HVDC system adopting improved synchronverters. IEEE Trans Power Deliv 31(2):445–455

    Article  Google Scholar 

  9. Dörfler F, Bullo F (2012) Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J Control Optim 50:1616–1642

    Article  MathSciNet  MATH  Google Scholar 

  10. Dörfler F, Bullo F (2014) Synchronization in complex networks of phase oscillators: a survey. Automatica 50:1539–1564

    Article  MathSciNet  MATH  Google Scholar 

  11. Driesen J, Visscher K (2008) Virtual synchronous generators. In: IEEE Power and energy society general meeting—conversion and delivery of electrical energy in the 21st century, Pittsburg, PA, July 2008, pp 1–3

  12. Efimov D, Schiffer J, Ortega R (2016) Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids. Int J Control 89(5):909–918

    Article  MathSciNet  MATH  Google Scholar 

  13. Efimov D, Schiffer J, Barabanov N, Ortega R (2017) A relaxed characterization of ISS for periodic systems with multiple invariant sets. Eur J Control 37:1–7

    Article  MathSciNet  MATH  Google Scholar 

  14. Farkas B, Wegner SA (2016) Variations on Barbălat’s Lemma. Am Math Monthly 123(8):825–830

    Article  MATH  Google Scholar 

  15. Fiaz S, Zonetti D, Ortega R, Scherpen JMA, van der Schaft AJ (2013) A port-Hamiltonian approach to power network modeling and analysis. Eur J Control 19:477–485

    Article  MathSciNet  MATH  Google Scholar 

  16. Fitzgerald AE, Kingsley C, Umans SD (2003) Electric machinery, 6th edn. McGraw-Hill, New York

    Google Scholar 

  17. Galaz M, Ortega R, Bazanella AS, Stankovic AM (2003) An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39:111–119

    Article  MathSciNet  MATH  Google Scholar 

  18. Grainger JJ, Stevenson WD (1994) Power systems analysis. McGraw-Hill, New York

    Google Scholar 

  19. Halanay A, Leonov GA, Răsvan V (1987) From pendulum equation to an extended analysis of synchronous machines. Rend Seminario Matematico Univers e Politecnico di Torino 45(2):91–106

    MathSciNet  MATH  Google Scholar 

  20. Hayes WD (1953) On the equation for a damped pendulum under a constant torque. Zeitschrift für angewandte Mathematik und Physik 4:398–401

    Article  MathSciNet  MATH  Google Scholar 

  21. Jayawardhana B, Weiss G (2009) State convergence of passive nonlinear systems with an \(L^2\) input. IEEE Trans Autom Control 54(7):1723–1727

    Article  MATH  Google Scholar 

  22. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  23. Kothari DP, Nagrath IJ (2004) Electric machines, 3rd edn. Tata McGraw-Hill, New Delhi

    Google Scholar 

  24. Kundur P (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  25. Leonov GA, Ponomarenko DV, Smirnova VB (1996) Frequency-domain methods for nonlinear analysis: theory and applications. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  26. Logemann H, Ryan EP (2004) Asymptotic behaviour of nonlinear systems. Am Math Monthly 111(10):864–889

    Article  MathSciNet  MATH  Google Scholar 

  27. Mandel Y, Weiss G (2015) Adaptive internal model based suppression of torque ripple in brushless DC motor drives. Syst Sci Control Eng Open Access J 3(1):162–176

    Article  Google Scholar 

  28. Natarajan V, Weiss G (2014) Almost global asymptotic stability of a constant field current synchronous machine connected to an infinite bus. In: Proceedings of the 53rd IEEE conference on decision and control, Los Angeles, pp 3272–3279

  29. Natarajan V, Weiss G (2014) A method for proving the global stability of a synchronous generator connected to an infinite bus. In: Proceedings of the IEEE 28th Convention of Electrical and Electronics Engineers in Israel, Eilat

  30. Natarajan V, Weiss G (2017) Synchronverters with better stability due to virtual inductors, virtual capacitors and anti-windup. IEEE Trans Ind Electron 64(7):5994–6004

    Article  Google Scholar 

  31. Park RH (1929) Two-reaction theory of synchronous machines. Generalized method of analysis-part I. Trans Am Inst Electr Eng 48:716–727

    Article  Google Scholar 

  32. Sauer PW, Pai MA (1997) Power systems dynamics and stability. Stipes Publishing, Champaign

    Google Scholar 

  33. Sauer PW, Pai MA (2014) Power system dynamic equilibrium, power flow and steady-state stability. In: Savulescu SC (ed) Chapter 1 in the book “Real-time stability in power systems”, 2nd edn. Springer, Cham, pp 1–26

    Google Scholar 

  34. Sard A (1942) The measure of the critical values of differentiable maps. Bull Am Math Soc 48:883–890

    Article  MathSciNet  MATH  Google Scholar 

  35. Schiffer J, Efimov D, Ortega R, Barabanov N (2017) An input-to-state stability approach to verify almost global stability of a synchronous-machine-infinite-bus system. Philos Trans R Soc A. https://doi.org/10.1098/rsta.2016.0304

    MATH  Google Scholar 

  36. Szlenk W (1984) An introduction to the theory of smooth dynamical systems. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  37. Venezian E, Weiss G (2016) A warning about the use of reduced models of synchronous generators. In: Proceedings of international conference on the science of electrical engineering (ICSEE) Eilat, Israel

  38. Walker JH (1981) Large synchronous machines: design, manufacture and operation. Oxford University Press, Oxford

    Google Scholar 

  39. Yu YN, Vongsuriya K (1967) Nonlinear power system stability study by Liapunov function and Zubov’s method. IEEE Trans Power Appar Syst 86:1480–1485

    Article  Google Scholar 

  40. Zhong QC, Nguyen PL, Ma Z, Sheng W (2014) Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans Power Electron 29(2):617–630

    Article  Google Scholar 

  41. Zhong QC, Weiss G (2009) Static synchronous generators for distributed generation and renewable energy. In: proceedings of the IEEE PES power systems conference & exhibition, Washington, USA

  42. Zhong QC, Weiss G (2011) Synchronverters: inverters that mimic synchronous generators. IEEE Trans Ind Electron 58(4):1259–1267

    Article  Google Scholar 

  43. Zhou J, Ohsawa Y (2009) Improved swing equation and its properties in synchronous generators. IEEE Trans Circuit Syst 56(1):200–209

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Natarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Grant No. 800/14 of the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, V., Weiss, G. Almost global asymptotic stability of a grid-connected synchronous generator. Math. Control Signals Syst. 30, 10 (2018). https://doi.org/10.1007/s00498-018-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0216-2

Keywords

Mathematics Subject Classification

Navigation