Skip to main content
Log in

Variational point-obstacle avoidance on Riemannian manifolds

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, we study variational point-obstacle avoidance problems on complete Riemannian manifolds. The problem consists of minimizing an energy functional depending on the velocity, covariant acceleration and a repulsive potential function used to avoid an static obstacle given by a point in the manifold, among a set of admissible curves. We derive the dynamical equations for stationary paths of the variational problem, in particular on compact connected Lie groups and Riemannian symmetric spaces. Numerical examples are presented to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If \(R=Q\), \(\log (R^{T}Q)=0\) and this case is outside the problem formulation since we are in the obstacle.

References

  1. Abrunheiro L, Camarinha M, Clemente-Gallardo J, Cuchí JC, Santos P (2018) A general framework for quantum splines. Int J Geom Methods Mod Phys 15(09):1850147

    Article  MathSciNet  Google Scholar 

  2. Assif M, Banavar R, Bloch A, Camarinha M, Colombo L (2018) Variational collision avoidance problems on Riemannian manifolds. In: Proceedings of the IEEE international conference on decision and control, pp 2791–2796

  3. Bloch A, Baillieul J, Crouch PE, Marsden JE, Zenkov D (2015) Nonholonomic mechanics and control, 2nd edn. Springer, New York

    Book  Google Scholar 

  4. Biggs J, Holderbaum W (2008) Planning rigid body motions using elastic curves. Math Control Sig Syst 20(3):351–367

    Article  MathSciNet  Google Scholar 

  5. Biggs J, Colley L (2016) Geometric attitude motion planning for spacecraft with pointing and actuator constraints. J Guid Control Dyn 39(7):1672–1677

    Article  Google Scholar 

  6. Bloch A, Camarinha M, Colombo L (2017) Variational obstacle avoidance on Riemannian manifolds. In: Proceedings of the IEEE international conference on decision and control, pp 146–150

  7. Bloch A, Camarinha M, Colombo LJ (2019) Dynamic interpolation for obstacle avoidance on Riemannian manifolds. Int J Control 1–22. https://doi.org/10.1080/00207179.2019.1603400. Preprint available at arXiv:1809.03168 [math.OC]

  8. Bloch A, Crouch P (1996) On the equivalence of higher order variational problems and optimal control problems. In: Proceedings of the IEEE international conference on decision and control, Kobe, Japan, pp 1648–1653

  9. Boothby WM (1975) An introduction to differentiable manifolds and Riemannian geometry. Academic Press Inc., Orlando

    MATH  Google Scholar 

  10. Bullo F, Lewis AD (2004) Geometric control of mechanical systems. Springer, Berlin

    MATH  Google Scholar 

  11. Camarinha M (1996) The geometry of cubic polynomials in Riemannian manifolds. Ph.D. thesis, Univ. de Coimbra

  12. Colombo L, Ferraro S, Martín de Diego D (2016) Geometric integrators for higher-order variational systems and their application to optimal control. J Nonlinear Sci 26(6):1615–1650

    Article  MathSciNet  Google Scholar 

  13. Colombo L (2014) Geometric and numerical methods for optimal control of mechanical systems. PhD thesis, Instituto de Ciencias Matemáticas, ICMAT (CSICUAM-UCM-UC3M)

  14. Crouch P, Leite FS (1995) The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn Control Syst 1(2):177–202

    Article  MathSciNet  Google Scholar 

  15. Giambó R, Giannoni F, Piccione P (2002) An analytical theory for Riemannian cubic polynomials. IMA J Math Control Inform 19:445–460

    Article  MathSciNet  Google Scholar 

  16. Giambó R, Giannoni F, Piccione P (2004) Optimal control on Riemannian manifolds by interpolation. Math Control Sig Syst 16(4):278–296

    Article  MathSciNet  Google Scholar 

  17. Helgason S (1978) Differential geometry, Lie groups, and symmetric spaces, pure and applied mathematics, vol 80. Academic Press, Oxford

    MATH  Google Scholar 

  18. Hinkle J, Fletcher PT, Joshi S (2014) Intrinsic polynomials for regression on Riemannian manifolds. J Math Imag Vis 50(1–2):32–52

    Article  MathSciNet  Google Scholar 

  19. Hong Y, Kwitt R, Singh N, Vasconcelos N, Niethammer M (2016) Parametric regression on the Grassmannian IEEE transactions on pattern analysis and machine intelligence

  20. Hussein I, Bloch A (2007) Dynamic coverage optimal control for multiple spacecraft interferometric imaging. J Dyn Control Syst 13(1):69–93

    Article  MathSciNet  Google Scholar 

  21. Jackson J (1990) Dynamic interpolation and application to flight control. PhD Thesis. Arizona State Univ.

  22. Karcher H (1977) Riemannian center of mass and mollifier smoothing. Comm Pure Appl Math 30:509–541

    Article  MathSciNet  Google Scholar 

  23. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  Google Scholar 

  24. Koditschek D (1992) Robot planning and control via potential functions robotics review. MIT Press, Cambridge

    Google Scholar 

  25. Koditschek D, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv Appl Math 11(4):412–442

    Article  MathSciNet  Google Scholar 

  26. Milnor J (2002) Morse theory. Princeton Univ. Press, Princeton

    Google Scholar 

  27. Noakes L, Heinzinger G, Paden B (1989) Cubic splines on curved spaces. IMA J Math Control Inf 6:465–473

    Article  MathSciNet  Google Scholar 

  28. Nomizu K (1954) Invariant affine connections on homogeneous spaces. Am J Math 76:33–65

    Article  MathSciNet  Google Scholar 

  29. O’Neill B (1967) Submersions and geodesics. Duke Math J 34:363–373

    Article  MathSciNet  Google Scholar 

  30. Popei T (2007) Higher-order geodesics in Lie groups. Math Control Sig Syst 19(3):235–253

    Article  MathSciNet  Google Scholar 

  31. Silva Leite F, Camarinha M, Crouch P (2000) Elastic curves as solutions of Riemannian and sub-Riemannian control problems. Math Control Sig Syst 13(2):140–155

    Article  MathSciNet  Google Scholar 

  32. Spindler K (2002) Attitude maneuvers which avoids forbidden direction. J Dyn Control Syst 8(1):1–22

    Article  MathSciNet  Google Scholar 

  33. Spindler K (1998) Optimal control on Lie groups with applications to attitude control. Math Control Sig Syst 11(3):197–219

    Article  MathSciNet  Google Scholar 

  34. Zhang E, Noakes L (2018) Left Lie reduction for curves in homogeneous spaces. Adv Comput Math 44(5):1673–1686

    Article  MathSciNet  Google Scholar 

  35. Zhang E, Noakes L (2017) Relative geodesics in bi-invariant Lie groups. Proc R Soc A Math Phys Eng Sci 473:20160619

    MathSciNet  MATH  Google Scholar 

  36. Zhang E, Noakes L (2019) Optimal interpolants on Grassmann manifolds. Math Control Sig Syst 31(3):363–383

    Article  MathSciNet  Google Scholar 

  37. Zhang E, Noakes L (2019) Riemannian cubics and elastica in the manifold \(SPD(n)\) of all \(n\times n\) symmetric positive-definite matrices. J Geom Mech 11(2):277–299

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of A. Bloch was supported by NSF Grants DMS-1207693, DMS-1613819 and ASFOR. The research of M. Camarinha was partially supported by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/ 2019, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. L. Colombo was supported by La Caixa Foundation. The Project that gave rise to these results received the support of a fellowship from “la Caixa’ Foundation (ID 100010434). The fellowship code is LCF/BQ/PI19/11690016. L. Colombo was also partially supported by MINECO (Spain) Grant MTM2016-76072-P, I-Link Project (linkA20079) from CSIC, Severo Ochoa Program and Santander Universidades Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Colombo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, A., Camarinha, M. & Colombo, L. Variational point-obstacle avoidance on Riemannian manifolds. Math. Control Signals Syst. 33, 109–121 (2021). https://doi.org/10.1007/s00498-021-00276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-021-00276-0

Keywords

Navigation