Skip to main content
Log in

Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Neural networks (NNs), type-1 fuzzy logic systems and interval type-2 fuzzy logic systems (IT2FLSs) have been shown to be important methods in real world applications, which range from pattern recognition, time series prediction, to intelligent control. Recent research shows that embedding an IT2FLS on an NN can be very effective for a wide number of non-linear complex systems, especially when handling imperfect or incomplete information. In this paper we are presenting several models of interval type-2 fuzzy neural networks (IT2FNNs) that use a set of rules and interval type-2 membership functions for that purpose. Simulation results of non-linear function identification using the IT2FNN for one and three variables and for the Mackey–Glass chaotic time series prediction are presented to illustrate that the proposed models have potential for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abiyev RH, Kaynak O (2010) Type-2 fuzzy neural structure for identification and control of time varying plants. IEEE Trans Ind Electron 57:4147–4159

    Google Scholar 

  • Abiyev RH, Kaynak O, Alshanableh T, Mamedov F (2011) A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl Soft Comput J 11:1396–1406

    Google Scholar 

  • Aliev RA, Pedrycz W, Guirimov BG, Aliev RR, Ilhan U, Babagil M, Mammadli S (2011) Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization. Inf Sci 181:1591–1608

    Article  MathSciNet  Google Scholar 

  • Bajestani NS, Zare A (2009) Application of optimized type 2 fuzzy time series to forecast Taiwan stock index.In: 2nd Conference on computer, control and communication, pp 1–6

  • Buckley J (1992) Universal fuzzy controllers. Automatica 28(6):1245–1248

    Article  MATH  MathSciNet  Google Scholar 

  • Buckley J (1993) Sugeno type controllers are universal controllers. Automatica 53:299–304

    Google Scholar 

  • Buckley J, Hayashi Y (1994) Can fuzzy neural networks approximate continuous fuzzy functions? Fuzzy Sets Syst 61:43–52

    Google Scholar 

  • Castro JR, Castillo O, Melin P, Mendoza O, Rodriguez-Diaz A (2011) An interval type-2 fuzzy neural network for chaotic time series prediction with cross-validation and Akaike test. Soft computing for intelligent control and mobile robotics, studies in computational intelligence 318:269–285

  • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2007) Hybrid learning algorithm for interval type-2 fuzzy neural networks. In: Proceedings of Granular Computing 2007. Silicon Valley, USA, pp 157–162 (ISBN: 0-7695-3032-X)

  • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2008) Soft Computing for Hybrid Intelligent Systems. A Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks: The Case of Time Series Prediction. Springer, Heidelberg, pp 363–386 (ISBN: 978-3-540-70811-7, ISSN: 1860-949X)

  • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2008) Transactions on Computational Science. Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Springer, New York, pp 104–114 (ISBN: 978-3-540-79298-7, ISSN: 0302-9743)

  • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2008) Hybrid learning algorithm for a new class interval type-2 fuzzy neural networks. J Inf Sci 179(13):2175–2193

    Google Scholar 

  • Ceylan R, Ozbay Y, Karlik B (2009) Classification of ECG arrhythmias using type-2 fuzzy clustering neural network. In: 14th National Biomedical Engineering Meeting, BIYOMUT 2009, pp 1–4

  • Edwards RE et al (1995) Functional analysis: theory and applications. Dover Publications, Mineola

  • Hastie T, Tibshirani T, Friedman J (2001) The elements of statistical learning. Springer, New York, pp 214–216

  • Hirota K, Pedrycz W (1994) OR/AND neuron in modeling fuzzy set connectives. IEEE Transactions on Fuzzy Systems 2(994):151–161

    Google Scholar 

  • Hornick K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–684

    Article  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall, New York

    Google Scholar 

  • Joo MG, Lee JS (2002) Universal approximation by hierarchical fuzzy system with constraints on the fuzzy rule. Fuzzy Sets Syst 130:175–188

    Article  MATH  MathSciNet  Google Scholar 

  • Kantorovich LV, Akilov GP (1982) Functional analysis, 2nd edn. Pergamon, Oxford

    MATH  Google Scholar 

  • Karliotak B, Koçyi\({\eth }\)it Y, Korürek M (2009) Differentiating types of muscle movements using a wavelet based fuzzy clustering neural network. Expert Syst 26(1): 49–59.

    Google Scholar 

  • Kosko B (1992) Neural networks and fuzzy systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Kosko B (1994) Fuzzy systems as universal approximators. IEEE Trans Comput 43(1):1329–1333

    Article  MATH  Google Scholar 

  • Kreinovich V, Mouzouris GC, Nguyen HT (1998) Fuzzy rule based modelling as a universal aproximation tool. In: Nguyen H T, Sugeno M (eds) Fuzzy systems, modeling and control , Kluwer Ac. Publ., Boston, pp 135–195.

  • Lee CH, Hu TW, Lee CT, Lee YC (2008) A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification. In: Proccedings of the IEEE international conference on fuzzy systems, FUZZ-IEEE 2008, Hong Kong, China, pp 1496–1502

  • Lee CH, Hong JL, Lin YC, Lai WY (2003) Type-2 fuzzy neural network systems and learning. Int J Comput Cognit 1(4):79–90

    Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  • Lin F, Chou P (2009) Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Trans Ind Electron 56(1):178–193

    Article  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall, New Jersey

    Google Scholar 

  • Panahian Fard S, Zainuddin Z (2011) Interval type-2 fuzzy neural networks version of the Stone Weierstrass theorem. Neurocomputing 74:2336–2343

    Google Scholar 

  • Rickard JT, Aisbett J, Gibbon G (2009) Fuzzy subsethood for fuzzy sets of type-2 and generalized Type-n. IEEE Trans Fuzzy Syst 17(1):50–60

    Article  Google Scholar 

  • Royden HL (1968) Real analysis, 2nd edn. Macmillan, New York

    Google Scholar 

  • Rudin W (1976) Principles of mathematical analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Scarborough CT, Stone AH (1966) Products of nearly compact spaces. Trans Am Math Soc 124:131–147

    Article  MATH  MathSciNet  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modelling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  • Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic Press, Dublin

    Google Scholar 

  • Wang L, Mendel J (1992a) Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans Neural Netw 3:807–813

    Article  Google Scholar 

  • Wang L, Mendel J (1992b) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cyber 22(6):1414–1427

    Google Scholar 

  • Wang CH, Cheng CS, Lee TT (2004) Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans Syst Man Cybern Part B Cybern 34(3):1462–1477

    Google Scholar 

  • Wang C-H, Cheng C-S, Lee T-T (2004) Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans Syst Man Cybern Part B Cybern 34:1462–1477

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou SM (1999) Dynamic recurrent neural networks for a hybrid intelligent decision support system for the metallurgical industry. Expert Syst 16(4):240–247

    Article  Google Scholar 

  • Zhou S-M, Xu L-D (2001) A new type of recurrent fuzzy neural network for modeling dynamical system. Knowl Based Syst 14(5–6):243–251

    Article  MathSciNet  Google Scholar 

  • Zhou SM, Li HX, Xu L (2003) A variational approach to intensity approximation for remote sensing images using dynamic neural networks. Expert Syst 20(4):163–170

    Article  Google Scholar 

  • Zhou S-M, Garibaldi JM, John RI, Chiclana F (2009) On constructing parsimonious type-2 fuzzy logic systems via influential rule selection. IEEE Trans Fuzzy Syst 17(3):654–667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Additional information

Communicated by J. M. Garibaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, O., Castro, J.R., Melin, P. et al. Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18, 1213–1224 (2014). https://doi.org/10.1007/s00500-013-1139-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1139-y

Keywords

Navigation