Skip to main content
Log in

Adaptive wave variables for bilateral teleoperation using neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Stability and transparency determine the performance of bilateral teleoperation systems. Previous studies on passivity-based control focused on stability such that the results of the study are robust in terms of the time delay issue. But there are not sufficient studies on performance analysis based on environmental elements related to transparency. This paper suggests an adaptive wave transformation system where stability is secured by controlling characteristic impedance in the existing wave variables system adaptively according to time delay and environmental elements and simultaneously ensuring a proper dynamic performance depending on external force. Neural network was utilized to design the system that enables controlling the characteristic impedance depending on external factors such as time delay and comparison with the existing wave variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lawrence DA (1992) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 9(5):625–637

    MathSciNet  Google Scholar 

  2. Natori K, Tsuji T, Ohnishi K, Hace A, Jezemik K (2010) Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay. IEEE Trans Industr Electron 57(3):1050–1062

    Article  Google Scholar 

  3. Liu F, Wu M, He Y, Yokoyama R (2011) Improved delay-dependent stability analysis for uncertain stochastic neural networks with time-varying delay. Neural Comput Appl 20(3):441–449

    Article  Google Scholar 

  4. Zhang Z, Zhang Y, Chang YW, Chong KT (2011) Time discretization of nonlinear time-delay system using matrix exponential method. Int J Control Autom Syst 9(6):1219–1226

    Article  Google Scholar 

  5. Zhang Y, Chong KT, Kazantzis N, Parlos AG (2012) Discretization of nonlinear input-driven dynamical systems using the Adomian decomposition method. Appl Math Model 36(12):5856–5875

    Article  MathSciNet  Google Scholar 

  6. Kumar RR, Chong KT (2012) The stability of distributed neutral delay differential systems with Markovian switching. Chaos, Solitons Fractals 45(4):416–425

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Cairano S, Bemporad A (2010) Model predictive control tuning by controller matching. IEEE Trans Autom Control 55:185–190

    Article  Google Scholar 

  8. Sheng J, Spong MW (2004) Model predictive control for bilateral teleoperation systems with time delays. Can Conf Electr Comput Eng 4:1877–1880

    Google Scholar 

  9. Gao Y, Chong KT (2012) The explicit constrained min-max model predictive control of a discrete-time linear system with uncertain disturbances. IEEE Trans Autom Control 57(9):2373–2378

    Article  MathSciNet  Google Scholar 

  10. Leung GMH, Francis BA, Apkarian J (1995) Bilateral controller for teleoperators with time delay via μ-synthesis. IEEE Trans Robot Autom 11(1):105–116

    Article  Google Scholar 

  11. Cho HC, Park JH, Kim K, Park JO (2001) Sliding mode-based impedance controller for bilateral teleoperation under varying time-delay. Proc IEEE Int Conf Robot Autom 1:1025–1030

    Google Scholar 

  12. Chen M, Jiang B, Jiang CS, Wu Q (2010) Robust control for a class of time-delay uncertain nonlinear systems based on sliding mode observer. Neural Comput Appl 19(7):945–951

    Article  Google Scholar 

  13. Long B, Ryu JH, Chong KT (2013) Optimal switching table-based sliding mode control of an energy recovery Li-Ion power accumulator battery pack testing system. Energies 6(10):5200–5218

    Article  Google Scholar 

  14. Fattouh A, Sename O (2003) Finite spectrum assignment for teleoperation systems with time delay. Proc IEEE Conf Decis Control 6:6060–6065

    Google Scholar 

  15. Haddadi A, Hashtrudi-Zaad K (2010) Bounded-impedance absolute stability of bilateral teleoperation control systems. IEEE Trans Haptics 3(1):15–17

    Article  Google Scholar 

  16. Hannaford B, Fiorini P (1988) A detailed model of bilateral teleoperation. Proc IEEE Int Conf Syst Man Cybern 1:117–121

    Google Scholar 

  17. Anderson RJ, Spong MW (1989) Bilateral control of teleoperators with time delay. IEEE Trans Autom Control 34(5):494–501

    Article  MathSciNet  Google Scholar 

  18. Niemeyer G, Slotine E (1991) Stable adaptive teleoperation. IEEE J Oceanic Eng 16(1):152–162

    Article  Google Scholar 

  19. Moussa B, Antoine F (2006) Wave-based passive control for transparent micro-teleoperation system. Robot Auton Syst 24:601–615

    Google Scholar 

  20. Robinson SM (1991) An implicit-function theorem for a class of non-smooth functions. Math Oper Res 16(2):292–309

    Article  MathSciNet  MATH  Google Scholar 

  21. Park Y, Kazantzis N, Parlos AG, Chong KT (2013) Time discretization of the point kinetic equations using matrix exponential method and first-order hold. Ann Nucl Energy 62:437–444

    Article  Google Scholar 

  22. Nikhi C, Spong MW (2003) Bilateral teleoperation over the internet: the time varying delay problem. Proc Am Control Conf 2003:155–160

    Google Scholar 

  23. Aziminejad A, Tavakoli M, Patel RV, Moallem M (2008) Transparent time-delayed bilateral teleoperation using wave variables. IEEE Trans Control Syst Technol 16(3):548–555

    Article  Google Scholar 

  24. Haykin S (1994) Neural networks. MacMillan, London

    MATH  Google Scholar 

  25. Garg S, Pal SK, Chakraborty D (2007) Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Comput Appl 8:407–417

    Article  Google Scholar 

  26. Chong KT, Yoo SG (2006) Neural network prediction model for a real-time data transmission. Neural Comput Appl 15:373–382

    Article  Google Scholar 

  27. Atiya AF, Yoo SG, Chong KT, Kim H (2007) Packet loss rate prediction using the sparse basis prediction model. IEEE Trans Neural Networks 18:950–954

    Article  Google Scholar 

  28. Finschi L (1996) An implementation of the Levenberg–Marquardt algorithm, clausiusstrasses 45, CH-8092, Zuerich

  29. Peng CC, Magoulas GD (2010) Nonmonotone Levenberg–Marquardt training of recurrent neural architectures for processing symbolic sequences. Neural Comput Appl 20:897–908

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (no. 2013-009458) and (no. 2013-068127) and Honam Regional Leading Research Project (no. G02A00460046602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kil To Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.G., Chong, K.T. Adaptive wave variables for bilateral teleoperation using neural networks. Neural Comput & Applic 25, 1249–1262 (2014). https://doi.org/10.1007/s00521-014-1606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1606-0

Keywords

Navigation