Skip to main content
Log in

Twin support vector machine: theory, algorithm and applications

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Twin support vector machine (TWSVM) has gained increasing interest from various research fields recently. In this paper, we aim to report the current state of the theoretical research and practical advances on TWSVM. We first give the basic thought and theory of TWSVM, including the theory of proximal support vector machine, generalized eigenvalue proximal support vector machine, and TWSVM. Then, we focus on the various improvements made to TWSVM, mainly including least squares twin support vector machine, smooth twin support vector machine, regularized twin support vector machine, projection twin support vector machine, and modified TWSVM on the model selection problem. These newly emerging algorithms greatly expand the applications of TWSVM. In recent years, there is a lot of research on application of TWSVM. Next, we list some research on application of TWSVM in detail. Finally, we try to provide a comprehensive view of these advances in TWSVM and discuss the direction of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cristianini N, Taylor JS (2004) An introduction to support vector machines and other kernel-based learning methods (trans: Guozheng L, Meng W, Huajun Z). Electronic Industry Press, Beijing

  2. Ding S, Qi B, Tan H (2011) An overview on theory and algorithm of support vector machines. UESTC J Univ Electron Sci Technol China 40(1):2–10

    Google Scholar 

  3. Cortes C, Vapnik V (1995) Support-vector networks. Spr Mach Learn 20(2):273–297

    MATH  Google Scholar 

  4. Vapnik VN (2000) The nature of statistical learning theory (trans: Zhang X). Tsinghua University Press, Beijing

  5. Vapnik VN (2004) Statical learning theory (trans: Janhua X, Xuegong Z). Electronic Industry Press, Beijing

  6. Nguyen TD, Lee HH (2014) A new SVM method for an indirect matrix converter with common-mode voltage reduction. IEEE Trans Industr Inf 10(1):61–72

    Article  Google Scholar 

  7. Pasolli E, Melgani F, Tuia D et al (2014) SVM active learning approach for image classification using spatial information. IEEE Trans Geosci Remote Sens 52(4):2217–2233

    Article  Google Scholar 

  8. Weis C, Hess A, Budinsky L et al (2015) In-vivo imaging of cell migration using contrast enhanced MRI and SVM based post-processing. PLoS ONE 10(12):e0140548

    Article  Google Scholar 

  9. Li P, Dong L, Xiao H et al (2015) A cloud image detection method based on SVM vector machine. Neurocomputing 169:34–42

    Article  Google Scholar 

  10. Dou Z, Mebarki A, Ni L et al (2016) SVM application in hazard assessment: self-heating for sulfurized rust. J Loss Prev Process Ind 39:112–120

    Article  Google Scholar 

  11. Ding L, Yu F, Peng S et al (2013) A classification algorithm for network traffic based on improved support vector machine. J Comput 8(4):1090–1096

    Google Scholar 

  12. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  13. Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of 7th ACMSIFKDD, pp 77–86

  14. Li K, Lu XX (2013) Twin support vector machine algorithm with fuzzy weighting. Comput Eng Appl 49(4):162–165

    Google Scholar 

  15. Mangasarian OL, Wild EW (2006) Multi-surface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  16. Jayadeva, Reshma K, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  MATH  Google Scholar 

  17. Ding S, Yu J, Qi B et al (2014) An overview on twin support vector machines. Artif Intell Rev 42(2):245–252

    Article  Google Scholar 

  18. Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recogn Lett 29(13):1842–1848

    Article  Google Scholar 

  19. Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44(10):2678–2692

    Article  MATH  Google Scholar 

  20. Wang Z, Shao YH, Wu TR (2013) A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recogn 46(8):2267–2277

    Article  MATH  Google Scholar 

  21. Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53

    Article  MATH  Google Scholar 

  22. Chen WJ, Shao YH, Hong N (2013) Laplacian smooth twin support vector machine for semi-supervised classification. Int J Mach Learn Cybernet 5(3):1–10

    Google Scholar 

  23. Ding S, Huang H, Shi Z (2013) Smooth CHKS twin support vector machines. J Softw 24(11):2548–2557

    Article  MathSciNet  Google Scholar 

  24. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  25. Kumar MA, Khemchandani R, Gopal M et al (2010) Knowledge based least squares twin support vector machines. Inf Sci 180(23):4606–4618

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen J, Ji G (2010) Weighted least squares twin support vector machines for pattern classification. ICCAE 2:242–246

    Google Scholar 

  27. Chen J, Ji G (2010) Multi-class LSTSVM classifier based on optimal directed acyclic graph. In: ICCAE, IEEE, 2010, pp 100–104

  28. Gao S, Ye Q, Ye N (2011) 1-Norm least squares twin support vector machines. Neurocomputing 74(17):3590–3597

    Article  Google Scholar 

  29. Chen X, Yang J, Ye Q et al (2011) Recursive projection twin support vector machine via within-class variance minimization. Pattern Recogn 44(10):2643–2655

    Article  MATH  Google Scholar 

  30. Shao YH, Deng NY, Yang ZM (2012) Least squares recursive projection twin support vector machine for classification. Pattern Recogn 45(6):2299–2307

    Article  MATH  Google Scholar 

  31. Hua X, Ding S (2012) Matrix pattern based projection twin support vector machines. Int J Digit Content Technol Appl 6(20):172–181

    Article  Google Scholar 

  32. Shao Y, Wang Z, Chen WJ et al (2013) A regularization for the projection twin support vector machine. Knowl-Based Syst 37:203–210

    Article  Google Scholar 

  33. Wang D, Ye Q, Ye N (2010) Localized multi-plane TWSVM classifier via manifold regularization. In: IHMSC, IEEE, 2010, pp 70–73

  34. Shao Y, Deng N (2012) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25:114–121

    Article  MATH  Google Scholar 

  35. Gao B, Wang J, Huang H (2012) L2-loss twin support vector machine for classification. In: BMEI, 2012, pp 1265–1269

  36. Wang Y, Zhao X, Tian Y (2013) Local and global regularized twin SVM. Proc Comput Sci 18:1710–1719

    Article  Google Scholar 

  37. Khemchandani R, Chandra S (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1):77–88

    Article  MathSciNet  MATH  Google Scholar 

  38. Peng X, Xu D (2012) Twin Mahalanobis distance-based support vector machines for pattern recognition. Inf Sci 200:22–37

    Article  MathSciNet  MATH  Google Scholar 

  39. Su F, Shang H (2013) A wavelet kernel-based primal twin support vector machine for economic development prediction. Mathematical Problems in Engineering

  40. Yu J, Ding S, Jin F et al (2012) Twin support vector machines based on rough sets. Int J Digit Content Technol Appl 6(20):493–500

    Article  Google Scholar 

  41. Ding S, Yu J, Huang H et al (2013) Twin support vector machines based on particle swarm optimization. J Comput 8(9):2296–2303

    Article  Google Scholar 

  42. Ding S, Wu F, Nie R et al (2013) Twin support vector machines based on particle swarm optimization. J Softw 8(7):1743–1750

    Article  Google Scholar 

  43. Huang H, Ding S, Wu F (2013) Invasive weed optimization algorithm for optimizating the parameters of mixed kernel twin support vector machines. J Comput 8(8):2077–2084

    Article  Google Scholar 

  44. Peng X (2010) A v-twin support vector machine (v-TSVM) classifier and its geometric algorithms. Inf Sci 180(20):3863–3875

    Article  MathSciNet  MATH  Google Scholar 

  45. Peng X (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181(18):3967–3980

    Article  Google Scholar 

  46. Ye Q, Zhao C, Ye N et al (2011) Localized twin SVM via convex minimization. Neurocomputing 74(4):580–587

    Article  Google Scholar 

  47. Qi Z, Tian Y, Shi Y (2012) Twin support vector machine with universum data. Neural Netw 36:112–119

    Article  MATH  Google Scholar 

  48. Xu Y, Wang L, Zhong P (2012) A rough margin-based ν-twin support vector machine. Neural Comput Appl 21(6):1307–1317

    Article  Google Scholar 

  49. Ye Q, Zhao C, Gao S et al (2012) Weighted twin support vector machines with local information and its application. Neural Netw 35:31–39

    Article  MATH  Google Scholar 

  50. Peng X, Xu D (2013) Bi-density twin support vector machines for pattern recognition. Neurocomputing 99:134–143

    Article  Google Scholar 

  51. Peng X, Xu D (2013) Robust minimum class variance twin support vector machine classifier. Neural Comput Appl 22(5):999–1011

    Article  Google Scholar 

  52. Qi Z, Tian Y, Shi Y (2013) Robust twin support vector machine for pattern classification. Pattern Recogn 46(1):305–316

    Article  MATH  Google Scholar 

  53. Qi Z, Tian Y, Shi Y (2013) Structural twin support vector machine for classification. Knowl-Based Syst 43:74–81

    Article  Google Scholar 

  54. Naik G, Kumar D (2010) Twin SVM for gesture classification using the surface electromyogram. IEEE Trans Inf Technol Biomed 14(2):301–308

    Article  Google Scholar 

  55. Tian Y, Qi Z, Ju X et al (2014) Nonparallel support vector machines for pattern classification. IEEE Trans Cybern 44(7):1067–1079

    Article  Google Scholar 

  56. Mozafari K, Nasiri JA, Charkari NM, et al. (2011) Hierarchical least square twin support vector machines based framework for human action recognition. In: Machine vision and image processing (MVIP), 2011 7th Iranian. IEEE, pp 1–5

  57. Ding X, Zhang G, Ke Y, et al (2008) High efficient intrusion detection methodology with twin support vector machines. In: ISISE’08, 2008, pp 560–564

  58. Zhang X, Gao X, Wang Y (2008) Microcalcification clusters detection with tensor subspace learning and twin SVMs. In: WCICA 2008, IEEE, 2008, pp 1758–1763

  59. Zhang X (2009) Boosting twin support vector machine approach for MCs detection. In: APCIP 2009, IEEE, 2009, vol 1, pp 149–152

  60. Zhang X, Gao X, Wang M (2009) MCs detection approach using Bagging and Boosting based twin support vector machine. In SMC 2009. IEEE international conference on, IEEE, 2009, pp 5000–5505

  61. Cong H, Yang C, Pu X (2008) Efficient speaker recognition based on multi-class twin support vector machines and GMMs. In: IEEE conference on robotics, automation and mechatronics, pp 348–352

  62. Ding M, Yang D, Li X (2013) Fault diagnosis for wireless sensor by twin support vector machine. Mathematical Problems in Engineering

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.61379101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Zhang, N., Zhang, X. et al. Twin support vector machine: theory, algorithm and applications. Neural Comput & Applic 28, 3119–3130 (2017). https://doi.org/10.1007/s00521-016-2245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2245-4

Keywords

Navigation