Skip to main content
Log in

Online adaptive multiple pedestrian tracking in monocular surveillance video

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Automatic online multiple pedestrian tracking is a rather important and challenging task in the field of machine vision. A new multiple pedestrian tracking system is proposed in this paper, which combines pedestrian detection, motion prediction, target matching and adaptive location adjustment methods. The clip-split strategy was adopted for optimization of the detected pedestrian candidates, which resulted in great improvement of the tracking accuracies, especially when the marginal areas of the detected target candidates contained background scenes. For each frame, the proposed adaptive location adjustment method was used to adjust the location and scale of the targets to deal with drifting problems where necessary, especially after severe occlusions. Experimental results on three challenging real-world datasets demonstrated that the proposed tracker has excellent performance over other state-of-the-art trackers based on MOT metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2008) A survey of appearance models in visual object tracking. ACM Trans Intel Syst Technol 4(4): Article 58

  2. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey, ACM Comput Surv 38(4):Article 13

  3. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468

    Article  Google Scholar 

  4. Huang CM, Fu LC (2011) Multitarget visual tracking based effective surveillance with cooperation of multiple active cameras. IEEE Trans Syst Man Cybern Part B Cybern 41(1):234–247

    Article  Google Scholar 

  5. Renno J, Orwell J, Jones GA (2002) Learning surveillance tracking models for the self-calibrated ground plane. In: Proceedings of the 2002 British machine vision conference (BMVC 2002), pp 1–10

  6. Moeslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vision Image Underst 104(2):90–126

    Article  Google Scholar 

  7. Luck JP, Debrunner C, Hoff W, He Q, Small DE (2002) Development and analysis of a real-time human motion tracking system. In: Proceedings of the sixth IEEE workshop on applications of computer vision (WACV 2002), Orlando, pp 196–202

  8. Führ G, Jung CR (2014) Combining patch matching and detection for robust pedestrian tracking in monocular calibrated cameras. Pattern Recogn Lett 39:11–20

    Article  Google Scholar 

  9. Possegger H, Mauthner T, Roth PM, Bischof H (2014) Occlusion geodesics for online multi-object tracking. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition (CVPR 2014), Columbus, pp 1306–1313

  10. Führ G, Jung CR (2012) Robust patch-based pedestrian tracking using monocular calibrated cameras. In: Proceedings of the 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI 2012), Ouro Preto, pp 166–173

  11. Veenman CJ, Reinders MJ, Backer E (2001) Resolving motion correspondence for densely moving points. IEEE Trans Pattern Anal Mach Intell 23(1):54–72

    Article  Google Scholar 

  12. Serby D, Meier EK, Gool LV (2004) Probabilistic object tracking using multiple features. In: Proceedings of the 17th international conference on pattern recognition (ICPR 2004), Cambridge, vol 2, pp 184–187

  13. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  14. Yilmaz A, Li X, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536

    Article  Google Scholar 

  15. Ali A, Aggarwal JK (2001) Segmentation and recognition of continuous human activity. In: Proceedings of the 2001 IEEE workshop on detection and recognition of events in video, Vancouver, pp 28–35

  16. Edwards GJ, Taylor CJ, Cootes TF (1998) Interpreting face images using active appearance models. In: Proceedings of the third IEEE international conference on automatic face and gesture recognition, Nara, pp 300–305

  17. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vision 26(1):63–84

    Article  Google Scholar 

  18. Dicle C, Camps OI, Sznaier M (2013) The way they move: tracking multiple targets with similar appearance. In: Proceedings of the 2013 IEEE international conference on computer vision (ICCV 2013), Sydney, pp 2304–2311

  19. Pirsiavash H, Ramanan D, Fowlkes CC (2011) Globally-optimal greedy algorithms for tracking a variable number of objects. In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition (CVPR 2011), Colorado, pp 1201–1208

  20. Kuhn HW (2005) The Hungarian method for the assignment problem. Naval Res Log 52(1):7–21

    Article  Google Scholar 

  21. Andriyenko A, Schindler K (2010) Globally optimal multi-target tracking on a hexagonal lattice. In: Proceedings of the 11th European conference on computer vision (ECCV 2010), Heraklion, Crete, pp 466–479

  22. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  23. Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46:397–411

    Article  MATH  Google Scholar 

  24. Quan W, Chen JX, Yu N (2014) Robust object tracking enhanced random ferns. Visual Comput 30(4):351–358

    Article  Google Scholar 

  25. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning, Bari, pp 148–156

  26. Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014

    Article  Google Scholar 

  27. Xu X-S, Jiang Y, Xue X, Zhou Z-H (2012) Semisupervised multi-instance multi-label learning for video annotation task. In: Proceedings of the 20th ACM international conference on multimedia, Nara, pp 737–740

  28. Haritaoglu I, Harwood D, Davis LS (1998) W\(^4\)S: a real-time system for detecting and tracking people in \(2\frac{1}{2}\)D. In: Proceedings of the 5th European conference on computer vision (ECCV’98), Freiburg, pp 877–892

  29. Shen Y, Hu W, Liu J, Yang M, Wei B, Chou CT (2012) Efficient background subtraction for real-time tracking in embedded camera networks. In: Proceedings of the 10th ACM conference on embedded network sensor systems (SenSys ’10), Toronto, pp 295–308

  30. PETS 2009 (2009) Eleventh IEEE international workshop on performance evaluation of tracking and surveillance, 2009. Available: http://pets2009.net/)

  31. Benfold B, Reid I (2011) Stable multi-target tracking in real-time surveillance video. In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition (CVPR 2011), Colorado, pp 3457–3464

  32. Astola J, Haavisto P, Neuvo Y (1990) Vector median filters. Proc IEEE 78(4):678–689

    Article  Google Scholar 

  33. Han J, Kamber M (2001) Data mining: concepts and techniques. Morgan Kaufman, Burlington

    MATH  Google Scholar 

  34. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  MathSciNet  MATH  Google Scholar 

  35. Dollár P, Belongie S, Perona P (2010) The fastest pedestrian detector in the West. In: Proceedings of the British machine vision conference 2010 (BMVC), Aberystwyth, Wales, pp 68.1–68.11

  36. Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proceedings of the 2012 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW 2012), Providence, Rhode Island, pp 38–43

  37. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning (ICML’ 96), Bari, vol 96, pp 148–156

  38. Overett G, Petersson L, Brewer N, Andersson L, Pettersson N (2008) A new pedestrian dataset for supervised learning. In: Proceedings of the 2008 IEEE intelligent vehicles symposium, Eindhoven, pp 373–378

  39. Keller C, Enzweiler M, Gavrila DM (2011) A new benchmark for stereo-based pedestrian detection. In: Proceedings of the IEEE intelligent vehicles symposium, Baden-Baden

  40. Wang Z, Yoon S, Xie SJ, Lu Y, Park DS (2014) A high accuracy pedestrian detection system combining a cascade AdaBoost detector and random vector functional-link net. Sci World J 2014:105089. doi:10.1155/2014/105089

    Google Scholar 

  41. Ayazoglu M, Sznaier M, Camps OI (2012) Fast algorithms for structured robust principal component analysis. In: Proceedings of the 2012 IEEE conference on computer vision and pattern recognition (CVPR 2012), Providence, Rhode Island, pp 1704–1711

  42. Zhang K, Zhang L, Yang M (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  43. Kalal Z, Mikolajczyk K, Matas J (2010) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  44. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  45. Keni B, Rainer S (2008) Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J Image Video Process 2008:246309. doi:10.1155/2008/246309

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2013778) and also supported (in part) by Research Funds of Mokpo National University in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yoon, S. & Park, D.S. Online adaptive multiple pedestrian tracking in monocular surveillance video. Neural Comput & Applic 28 (Suppl 1), 127–141 (2017). https://doi.org/10.1007/s00521-016-2319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2319-3

Keywords

Navigation