Skip to main content
Log in

Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the design of concentric circular antenna arrays (CCAAs) with optimum side lobe level reduction using the Symbiotic Organisms Search (SOS) algorithm. Both thinned and full CCAAs are considered. SOS represents a rather new evolutionary algorithm for antenna array optimization. SOS is inspired by the symbiotic interaction strategies between different organisms in an ecosystem. SOS uses simple expressions to model the three common types of symbiotic relationships: mutualism, commensalism, and parasitism. These expressions are used to find the global minimum of the fitness function. Unlike other methods, SOS is free of tuning parameters, which makes it an attractive optimization method. The results obtained using SOS are compared to those obtained using several optimization methods, like Biogeography-Based Optimization (BBO), Teaching-Learning-Based Optimization (TLBO), and Evolutionary Programming (EP). It is shown that the SOS is a robust straightforward evolutionary algorithm that competes with other known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balanis C (2005) Antenna theory: analysis and design, 3rd edn. John Wiley & Sons, New York

    Google Scholar 

  2. Haupt R (2008) Optimized element spacing for low sidelobe concentric ring arrays. IEEE Trans Antennas Propag 56(1):266–268

    Article  Google Scholar 

  3. Panduro M, Mendez A, Dominguez R, Romero G (2006) Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. Int J Electron Commun (AEÜ) 60:713–717

    Article  Google Scholar 

  4. Ram G, Mandal D, Kar R, Ghoshal S (2015) Circular and concentric circular antenna array synthesis using cat swarm optimization. IETE Tech Rev 32(3):204–217

    Article  Google Scholar 

  5. Dessouky M, Sharshar H, Albagory Y (2006) Efficient sidelobe reduction technique for small-sized concentric circular arrays. Prog Electromagn Res 65:187–200

    Article  Google Scholar 

  6. Mandal D, Chandra A, Ghoshal S, Bhattacharjee A (2010) Side lobe reduction of a concentric circular antenna array using genetic algorithm. Serbian J of Electrical Engineering 7(2):141–148

    Article  Google Scholar 

  7. Mandal D, Ghoshal S, Bhattacharjee A (2010) Optimal design of concentric circular antenna array using particle swarm optimization with constriction factor approach. Int J of Computer Applications 1(17):94–98

    Google Scholar 

  8. Sharaqa A, Dib N (2012) On the optimal design of non-uniform concentric circular antenna arrays. Proceedings of the 2012 I.E. International Symposium on Antennas and Propagation, Chicago, pp 1–2

  9. Dib N, Sharaqa A (2012) On the optimal design of non-uniform circular antenna arrays. Journal of Applied Electromagnetism (JAE) 14(1):42–59

    Google Scholar 

  10. Guney K, Durmus A, Basbug S (2014) Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays. International Journal of Antennas and Propagation. doi:10.1155/2014/250841

    Article  Google Scholar 

  11. Mandal D, Ghoshal S, Bhattacharjee A (2010) Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programming technique. Journal of Infrared, Millimeter, and Terahertz Waves 31(6):667–680

    Google Scholar 

  12. Singh U, Kamal T (2012) Concentric circular antenna array synthesis using biogeography based optimization. Majlesi Journal of Electrical Engineering 6(1):48–55

    MathSciNet  Google Scholar 

  13. Dib N, Sharaqa A (2015) Design of non-uniform concentric circular antenna arrays with optimal sidelobe level reduction using biogeography-based optimization. Int Journal of Microwave and Wireless Technologies 7(2):161–166

    Article  Google Scholar 

  14. Sharaqa A, Dib N (2014) Circular antenna array synthesis using firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering 24(2):139–146

    Article  Google Scholar 

  15. Dib N, Sharaqa A (2014) Synthesis of thinned concentric circular antenna arrays using teaching-learning-based optimization. International Journal of RF and Microwave Computer-Aided Engineering 24(4):443–450

    Article  Google Scholar 

  16. Zailei L, Xueming H, Xuedong C, Xin L, Xiaoqing L (2015) Synthesis of thinned concentric circular antenna arrays using modified TLBO algorithm. International Journal of Antennas and Propagation. doi:10.1155/2015/586345

    Article  Google Scholar 

  17. Chatterjee A, Mahanti G, Mahanti A (2015) Synthesis of thinned concentric ring array antenna in predefined phi-planes using binary firefly and binary particle swarm optimization algorithm. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 28(2):164–174

    Article  Google Scholar 

  18. Chen X, Luo Z, He X, Zhu L (2014) Thinning and weighting of planar arrays by modified teaching-learning-based optimization algorithm. Journal of Electromagnetic Waves and Applications 28(15):1924–1934

    Article  Google Scholar 

  19. Haupt R (1994) Thinned arrays using genetic algorithms. IEEE Trans Antennas Propag 42(7):993–999

    Article  Google Scholar 

  20. Zhang L, Jiao Y, Weng Z, Zhang F (2010) Design of planar thinned arrays using a Boolean differential evolution algorithm. IET Microwaves, Antennas & Propagation 4:2172–2178

    Article  Google Scholar 

  21. Pathak N, Mahanti G, Singh S, Mishra J, Chakraborty A (2009) Synthesis of thinned planar circular array antennas using modified particle swarm optimization. Prog Electromagn Res Lett 12:87–97

    Article  Google Scholar 

  22. Zhang L, Jiao Y, Chen B, Li H (2012) Orthogonal genetic algorithm for planar thinned array designs. International Journal of Antennas and Propagation. doi:10.1155/2012/319037

    Article  Google Scholar 

  23. Ghosh P, Das S (2011) Synthesis of thinned planar concentric circular antenna arrays—a differential evolutionary approach. Prog Electromagn Res B 29:63–82

    Article  Google Scholar 

  24. Chatterjee A, Mahanti G, Pathak N (2010) Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Prog Electromagn Res B 25:331–348

    Article  Google Scholar 

  25. Basua B, Mahanti G (2012) Thinning of concentric two-ring circular array antenna using firefly algorithm. Scientia Iranica, Transactions D: Computer Science & Engineering and Electrical Engineering 19(6):1802–1809

    Article  Google Scholar 

  26. Singh U, Kamal T (2012) Synthesis of thinned planar concentric circular antenna arrays using biogeography-based optimization. IET Microw Antennas Propag 6(7):822–829

    Article  MathSciNet  Google Scholar 

  27. Singh U, Rattan M (2014) Design of thinned concentric circular antenna arrays using firefly algorithm. IET Microw Antennas & Propag 8(12):894–900

    Article  Google Scholar 

  28. Singh U, Salgotra R, Rattan M (2016) A novel binary spider monkey optimization algorithm for thinning of concentric circular antenna arrays. IETE J of Research 62(6):736–744

    Article  Google Scholar 

  29. Mandal D, Kumar H, Ghoshal S, Kar R (2012) Thinned concentric circular antenna array synthesis using particle swarm optimization. Procedia Technology 6:848–855

    Article  Google Scholar 

  30. Cheng M, Prayogo D (2014) Symbiotic organism search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  31. Duman S (2016) Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Comput & Applic. doi:10.1007/s00521-016-2265-0

    Article  Google Scholar 

  32. Dosoglu M, Guvenc U, Duman S, Sonmez Y, Kahraman H (2016) Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems. Neural Comput & Applic. doi:10.1007/s00521-016-2481-7

    Article  Google Scholar 

  33. Dib N (2016) Design of linear antenna arrays with low side lobes level using symbiotic organisms search. Prog Electromagn Res B 68:55–71

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the sabbatical leave research of the author which is supported by the Jordan University of Science and Technology, Irbid, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihad Dib.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dib, N. Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search. Neural Comput & Applic 30, 3859–3868 (2018). https://doi.org/10.1007/s00521-017-2971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2971-2

Keywords

Navigation